数组中的逆序对

描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007
数据范围:  对于 50%50% 的数据, size≤104size≤104
对于 100%100% 的数据, size≤105size≤105

数组中所有数字的值满足 0≤val≤1090≤val≤109

要求:空间复杂度 O(n)O(n),时间复杂度 O(nlogn)O(nlogn)

输入描述:

题目保证输入的数组中没有的相同的数字

class Solution {
  private:
    const int kmod = 1000000007;
  public:
    //思路就是先递归分组,分到最小,一定是最小,就是左右两边只有一个元素那种
    //这样又比较了大小,还顺便排了个序
    //之后再合并
    int InversePairs(vector<int> data) {
        int ret = 0;
        vector<int> tmp(data.size());
        merge_sort__(data, tmp, 0, data.size() - 1, ret);
        return ret;
    }
    void merge_sort__(vector<int>& arr, vector<int>& tmp, int l, int r, int& ret) {
        if (l >= r) {
            return;
        }

        int mid = l + ((r - l) >> 1);
        merge_sort__(arr, tmp, l, mid, ret);
        merge_sort__(arr, tmp, mid + 1, r, ret);//这里记得mid加1
        merge__(arr, tmp, l, mid, r, ret);
    }
    void merge__(vector<int>& array_, vector<int>& tmp, int left, int mid,
                 int right, int& ret) {
        int i = left, j = mid + 1, k = 0;
        while (i <= mid && j <= right) {
            if (array_[i] > array_[j]) {
                tmp[k++] = array_[j++];
                ret += (mid - i + 1);
                ret %= kmod;
            } else {
                tmp[k++] = array_[i++];

            }
        }
        while (i <= mid) {
            tmp[k++] = array_[i++];
        }
        while (j <= right) {
            tmp[k++] = array_[j++];
        }
        //把排好序的结果再给array,这样array递归结束就是一个有序数组
        for (k = 0, i = left; i <= right; ++i, ++k) {
            array_[i] = tmp[k];
        }
    }
};

总结:学会递归,,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值