描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007
数据范围: 对于 50%50% 的数据, size≤104size≤104
对于 100%100% 的数据, size≤105size≤105
数组中所有数字的值满足 0≤val≤1090≤val≤109
要求:空间复杂度 O(n)O(n),时间复杂度 O(nlogn)O(nlogn)
输入描述:
题目保证输入的数组中没有的相同的数字
class Solution {
private:
const int kmod = 1000000007;
public:
//思路就是先递归分组,分到最小,一定是最小,就是左右两边只有一个元素那种
//这样又比较了大小,还顺便排了个序
//之后再合并
int InversePairs(vector<int> data) {
int ret = 0;
vector<int> tmp(data.size());
merge_sort__(data, tmp, 0, data.size() - 1, ret);
return ret;
}
void merge_sort__(vector<int>& arr, vector<int>& tmp, int l, int r, int& ret) {
if (l >= r) {
return;
}
int mid = l + ((r - l) >> 1);
merge_sort__(arr, tmp, l, mid, ret);
merge_sort__(arr, tmp, mid + 1, r, ret);//这里记得mid加1
merge__(arr, tmp, l, mid, r, ret);
}
void merge__(vector<int>& array_, vector<int>& tmp, int left, int mid,
int right, int& ret) {
int i = left, j = mid + 1, k = 0;
while (i <= mid && j <= right) {
if (array_[i] > array_[j]) {
tmp[k++] = array_[j++];
ret += (mid - i + 1);
ret %= kmod;
} else {
tmp[k++] = array_[i++];
}
}
while (i <= mid) {
tmp[k++] = array_[i++];
}
while (j <= right) {
tmp[k++] = array_[j++];
}
//把排好序的结果再给array,这样array递归结束就是一个有序数组
for (k = 0, i = left; i <= right; ++i, ++k) {
array_[i] = tmp[k];
}
}
};
总结:学会递归,,,