(二)PyTorch深度学习:梯度下降

PyTorch深度学习:梯度下降算法实现线性回归

1、损失函数:

在这里插入图片描述

2、梯度下降算法种类:

在这里插入图片描述

3、现在使用梯度下降算法:将模型表达式对权重(W)求偏导得到(dy/dW),然后用(dy/dW)乘一个我们设置的学习率(a=0.001),最后用原权重(W)减去学习率(a)与梯度(dy/dW)的乘积,得到的差即为第一次更新迭代的权重W。

*模型表达式:(y = Wx + b)

更新模型的权重(W):用原权重(W)减去学习率(a)与梯度(dy/dW)的积式子:[ W = W - a(dy/dW) ]

4、示例代码

# 线性模型:y = wx
# 损失函数: loss = (y_pred-y)**2

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# 初设置权重w为1
w = 1.0

# 定义模型:y = x * w
def forward(x):
    return x * w

# 定义损失函数
def loss(xs, ys):
    loss = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        loss += (y_pred - y) ** 2
    return loss / len(xs)

# 定义梯度
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)

print('Predict (before training)', 4, forward(4))

for epoch in range(100):
    loss_val = loss(x_data, y_data)
    grad_val = gradient(x_data, y_data)
    # 梯度下降(若loss<0,则预测值<实际值,,所对应的梯度<0,原权重值减去为负值的梯度与学习率的乘积,则权重增加,会使得预测值变大,缩小与预测值的差距,更接近实际值;梯度为>0,也同理)
    w -= 0.01 *grad_val
    print("Epoch: ", epoch, 'W = ', w, 'loss = ', loss_val)

print('Predict (after training)', 4, forward(4))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值