Description
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。
能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?
Input
连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。
Output
若为欧拉图输出1,否则输出0。
Sample
Input
1
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6
Output
1
Hint
如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。
#include <iostream>
#include <bits/stdc++.h>
#define Max 0x3f3f3f3f
using namespace std;
bool Map[1010][1010],vis[1010];
int degree[1010];
int n,m,sum;
void DFS(int x)
{
vis[x] = true;
for(int i=1;i<=n;i++)
{
if(!vis[i] && Map[x][i])
{
sum++;
DFS(i);
}
}
}
int main()
{
ios::sync_with_stdio(false);
int t,u,v;
cin>>t;
while(t--)
{
cin>>n>>m;
memset(Map,false,sizeof(Map));
memset(vis,false,sizeof(vis));
memset(degree,0,sizeof(degree));
sum = 0;
for(int i=0;i<m;i++)
{
cin>>u>>v;
Map[u][v] = Map[v][u] = true;
degree[u]++;
degree[v]++;
}
DFS(1);
for(int i=1;i<=n;i++)
{
if(degree[i]%2 != 0)
{
sum = 0;
break;
}
}
if(sum == n-1)
cout<<"1\n";
else
cout<<"0\n";
}
return 0;
}