H - 数据结构实验之图论八:欧拉回路

博客围绕哥尼斯堡七桥问题展开,介绍欧拉解决此问题并创立拓扑学,引出欧拉定理、欧拉路、欧拉回路和欧拉图的概念。要求根据给定的无向图数据,判断其是否为欧拉图,给出了输入输出格式及示例,还给出判断提示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。

在这里插入图片描述

能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?

Input

连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。

Output

若为欧拉图输出1,否则输出0。

Sample

Input
1
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6

Output
1

Hint

如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。

#include <iostream>
#include <bits/stdc++.h>
#define Max 0x3f3f3f3f

using namespace std;

bool Map[1010][1010],vis[1010];
int degree[1010];
int n,m,sum;

void DFS(int x)
{
    vis[x] = true;
    for(int i=1;i<=n;i++)
    {
        if(!vis[i] && Map[x][i])
        {
            sum++;
            DFS(i);
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);

    int t,u,v;
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        memset(Map,false,sizeof(Map));
        memset(vis,false,sizeof(vis));
        memset(degree,0,sizeof(degree));
        sum = 0;
        
        for(int i=0;i<m;i++)
        {
            cin>>u>>v;
            Map[u][v] = Map[v][u] = true;
            degree[u]++;
            degree[v]++;
        }
        
        DFS(1);
        for(int i=1;i<=n;i++)
        {
            if(degree[i]%2 != 0)
            {
                sum = 0;
                break;
            }
        }
        
        if(sum == n-1)
            cout<<"1\n";
        else
            cout<<"0\n";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值