I - 数据结构实验之图论九:最小生成树

Description

有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。

Input

输入包含多组数据,格式如下。

第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=10000)

剩下m行每行3个非负整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c(城市编号从1到n)。

Output

每组输出占一行,仅输出最小花费。

Sample

Input
3 2
1 2 1
1 3 1
1 0

Output
2
0

#include <iostream>
#include <bits/stdc++.h>

using namespace std;

//并查集
struct node
{
    int u,v,w;
}edge[10001];

int parent[101];
int n,m;

bool cmp(node a,node b)
{
    return a.w < b.w;
}

//查找并返回结点 x 所属集合的根节点
int Find_root(int x)
{
	//查找root
    int root;
    for(root=x; parent[root]>=0 ;root=parent[root]);
    //优化方案:压缩路径
    while(root != x)
    {
        int tmp = parent[x];
        parent[x] = root;
        x = tmp;
    }
    return root;
}

//将两个不同集合的元素合并
//使两个集合中任两个元素都联通
void Union(int R1,int R2)
{
    int r1 = Find_root(R1);
    int r2 = Find_root(R2);
    int t = parent[r1] + parent[r2];
    if(parent[r1] > parent[r2])
    {
        parent[r1] = r2;
        parent[r2] = t;
    }
    else
    {
        parent[r2] = r1;
        parent[r1] = t;
    }
}

int Kruskal()
{
    int sum = 0;//权值
    int num = 0;//已选边数
    int u,v;
    //初始化
    memset(parent,-1,sizeof(parent));
    //排序
    sort(edge,edge+m,cmp);
    for(int i=0;i<m;i++)
    {
        u = edge[i].u;
        v = edge[i].v;
        if(Find_root(u) != Find_root(v))
        {
            sum += edge[i].w;
            num++;
            Union(u,v);
        }
        if(num >= n-1)
            return sum;
    }
    return 0;
}

int main()
{
    ios::sync_with_stdio(false);

    while(cin>>n>>m)
    {
        for(int i=0; i<m; i++)
            cin>>edge[i].u>>edge[i].v>>edge[i].w;
        cout<<Kruskal()<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值