Description
有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。
Input
输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=10000)
剩下m行每行3个非负整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c(城市编号从1到n)。
Output
每组输出占一行,仅输出最小花费。
Sample
Input
3 2
1 2 1
1 3 1
1 0
Output
2
0
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
//并查集
struct node
{
int u,v,w;
}edge[10001];
int parent[101];
int n,m;
bool cmp(node a,node b)
{
return a.w < b.w;
}
//查找并返回结点 x 所属集合的根节点
int Find_root(int x)
{
//查找root
int root;
for(root=x; parent[root]>=0 ;root=parent[root]);
//优化方案:压缩路径
while(root != x)
{
int tmp = parent[x];
parent[x] = root;
x = tmp;
}
return root;
}
//将两个不同集合的元素合并
//使两个集合中任两个元素都联通
void Union(int R1,int R2)
{
int r1 = Find_root(R1);
int r2 = Find_root(R2);
int t = parent[r1] + parent[r2];
if(parent[r1] > parent[r2])
{
parent[r1] = r2;
parent[r2] = t;
}
else
{
parent[r2] = r1;
parent[r1] = t;
}
}
int Kruskal()
{
int sum = 0;//权值
int num = 0;//已选边数
int u,v;
//初始化
memset(parent,-1,sizeof(parent));
//排序
sort(edge,edge+m,cmp);
for(int i=0;i<m;i++)
{
u = edge[i].u;
v = edge[i].v;
if(Find_root(u) != Find_root(v))
{
sum += edge[i].w;
num++;
Union(u,v);
}
if(num >= n-1)
return sum;
}
return 0;
}
int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>m)
{
for(int i=0; i<m; i++)
cin>>edge[i].u>>edge[i].v>>edge[i].w;
cout<<Kruskal()<<endl;
}
return 0;
}