思路:假若给的两个字符串不是完全一样的,找到两个字符串第一个不一样的位置pos1和最后一个不一样的位置pos2,得到区间[pos1,pos2],我们尝试翻转这个区间,若翻转之后的第一个字符串和第二个字符串仍然不一样的话,则答案为0,否则扩展这个区间的两边,若每次扩展两边的字母一样的话,答案加1,否则停止扩展。假若给的两个字符串完全一样,则用Manacher算法计算字符串回文子串的数量
代码:
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
const ll maxn=2e6+9;
ll book[300],p[maxn*2];
string s1,s2;
char s_new[maxn*2];
int Init()
{
int len = s1.size();
s_new[0] = '$';
s_new[1] = '#';
int j = 2;
for (int i = 0; i < len; i++)
{
s_new[j++] = s1[i];
s_new[j++] = '#';
}
s_new[j] = '\0'; //别忘了哦
return j; //返回s_new的长度
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
ll i,j,k,n,t;
cin>>t;
while(t--){
cin>>s1>>s2;
if(s1.size()!=s2.size()){
cout<<0<<endl;
continue;
}
else{
ll L=s1.size(),st=-1,ed=-1,flag=0;
for(i=0;i<L;i++){
if(s1[i]!=s2[i]){
if(!flag){
st=i;
ed=i;
flag=1;
}
if(flag){
ed=i;
}
}
}
if(st==ed&&st==-1){
int len=Init();
int id;
ll mx = 0,ans=0;
for (int i = 1; i < len; i++)
{
if (i < mx)
p[i] = min(p[2 * id - i], mx - i); //需搞清楚上面那张图含义, mx和2*id-i的含义
else
p[i] = 1;
while (s_new[i - p[i]] == s_new[i + p[i]]) //不需边界判断,因为左有'$',右有'\0'
p[i]++;
//我们每走一步i,都要和mx比较,我们希望mx尽可能的远,这样才能更有机会执行if (i < mx)这句代码,从而提高效率
if (mx < i + p[i])
{
id = i;
mx = i + p[i];
}
ans+=p[i]/2;
}
//memset(p,0,sizeof(p));
cout<<ans<<endl;
}
else{
string str1=s1.substr(st,ed-st+1);
string str2=s2.substr(st,ed-st+1);
reverse(str1.begin(),str1.end());
if(str1!=str2){
cout<<0<<endl;
}
else{
ll l=str1.size(),ans=1;
i=1;
while(s1[st-i]==s1[ed+i]&&st-i>=0&&ed+i<L){
ans++;
i++;
}
cout<<ans<<endl;
}
}
}
}
}