【计算题】(一)函数

题型一 求函数定义域

初等函数: 分母不为 0 0 0、负数不能取平方根、负数和零不能取对数
复合函数 f ( g ( x ) ) f(g(x)) f(g(x)) 外函数的定义域是内函数的值域
反函数 f − 1 f^{-1} f1 的定义域是 f f f 的值域,因此求原函数的值域即可

1. 初等函数定义域

:求函数 f ( x ) = l o g 10 ( x + 8 ) 26 − 2 x ( x − 2 ) ( x + 19 ) f(x) = \frac{log_{10}(x+8)\sqrt{26-2x}}{(x-2)(x+19)} f(x)=(x2)(x+19)log10(x+8)262x 的定义域


(1) 分母不为 0 0 0 x ≠ 2 x ≠ 2 x=2 x ≠ − 19 x ≠ -19 x=19
(2) 负数不能取平方根: x ≤ 13 x ≤ 13 x13
(3) 负数和零不能取对数: x > − 8 x > -8 x>8

综上,定义域为 ( − 8 , 2 ) ∪ ( 2 , 13 ] (-8,2) ∪ (2,13] (82)(213]

2. 复合函数定义域

例1:设函数 f ( x ) = { 1 0≤x≤2 2 2<x≤6 f(x)= \begin{cases} 1 & \text{0≤x≤2}\\ 2 & \text{2<x≤6} \end{cases} f(x)={120≤x≤22x≤6,求 f ( x + 2 ) + f ( x − 2 ) f(x+2) + f(x-2) f(x+2)+f(x2) 的定义域

:由于 f ( x ) f(x) f(x) 的定义域是 [ 0 , 6 ] [0,6] [06],因此 f ( x + 2 ) f(x+2) f(x+2) 的定义域为 0 ≤ x + 2 ≤ 6 0≤x+2≤6 0x+26,即 x ∈ [ − 2 , 4 ] x∈[-2,4] x[24]
f ( x − 2 ) f(x-2) f(x2) 的定义域为 0 ≤ x − 2 ≤ 6 0≤x-2≤6 0x26,即 x ∈ [ 2 , 8 ] x∈[2,8] x[28],两者取交集为定义域 x ∈ [ 2 , 4 ] x∈[2,4] x[24]

例2:设 f ( x ) = a r c s i n x , g ( x ) = l n x f(x) = arcsinx,g(x) = lnx f(x)=arcsinxg(x)=lnx,则 f ( g ( x ) ) f(g(x)) f(g(x)) 的定义域

:由于 f ( x ) f(x) f(x) 的定义域是 [ − 1 , 1 ] [-1,1] [11],因此 f ( g ( x ) ) f(g(x)) f(g(x)) 的定义域是 − 1 ≤ g ( x ) ≤ 1 -1≤g(x)≤1 1g(x)1 − 1 ≤ l n x ≤ 1 -1≤lnx≤1 1lnx1,求解为 [ e − 1 , e ] [e^{-1},e] [e1e]

3. 反函数定义域

:求 y = 1 − 4 − x 2 ( − 2 ≤ x ≤ 0 ) y = 1 - \sqrt{4-x^2}(-2≤x≤0) y=14x2 (2x0) 反函数的定义域

y = 1 − 4 − x 2 y=1 - \sqrt{4-x^2} y=14x2 单调减,所以该函数在有反函数,且值域 [ − 1 , 1 ] [-1,1] [11] 是反函数的定义域


题型二 求函数表达式

初等函数: f 1 ± f 2 f_1±f_2 f1±f2 联立方程组, f ( a x + b ) f(ax+b) f(ax+b) 配方
复合函数 g ( x ) g(x) g(x) 代入得 f ( g ( x ) f(g(x) f(g(x),求 f ( g ( x ) ) f(g(x)) f(g(x)) g ( x ) g(x) g(x) 定义域与 g ( x ) g(x) g(x) 自身定义域交集
反函数:反解自变量为 y y y 的表达式,复杂的原函数需要变量代换

1. 初等函数表达式

例1:设 f ( x ) + 2 f ( 1 x ) = 1 − x f(x) + 2f(\frac{1}{x}) = 1 - x f(x)+2f(x1)=1x,且 x ≠ 0 x≠0 x=0,求 f ( x ) f(x) f(x)

:令 1 x = t \frac{1}{x} = t x1=t,则有 f ( 1 t ) + 2 f ( t ) = 1 − 1 t f(\frac{1}{t}) + 2f(t) = 1 - \frac{1}{t} f(t1)+2f(t)=1t1联立方程组

{ f ( x ) + 2 f ( 1 x ) = 1 − x f ( 1 x ) + 2 f ( x ) = 1 − 1 x \begin{cases} f(x) +2f(\frac{1}{x}) = 1-x \\ f(\frac{1}{x})+2f(x) =1-\frac{1}{x} \end{cases} {f(x)+2f(x1)=1xf(x1)+2f(x)=1x1

从而有 f ( x ) = 1 3 − 2 3 x + x 3 f(x) = \frac{1}{3} - \frac{2}{3x} + \frac{x}{3} f(x)=313x2+3x

例2:已知 f ( 1 x − x ) = x 2 + 1 x 2 + 2 , x ≠ 0 f(\frac{1}{x}-x) = x^2+\frac{1}{x^2}+2,x≠0 f(x1x)=x2+x21+2x=0,求 f ( x ) f(x) f(x)

配方 f ( 1 x − x ) = x 2 + 1 x 2 + 2 = ( 1 x − x ) 2 + 4 f(\frac{1}{x}-x) = x^2+\frac{1}{x^2}+2 = (\frac{1}{x} - x)^2+4 f(x1x)=x2+x21+2=(x1x)2+4

t = 1 x − x t=\frac{1}{x}-x t=x1x,则 f ( t ) = t 2 + 4 f(t) = t^2+4 f(t)=t2+4,从而有 f ( x ) = x 2 + 4 f(x) = x^2+4 f(x)=x2+4

2. 反函数表达式

例1:求函数 y = { 2 x − 4 x≤0 l n ( x + 1 ) x>0 y = \begin{cases} 2x-4 & \text{x≤0} \\ ln(x+1) & \text{x>0}\end{cases} y={2x4ln(x+1)x≤0x>0 的反函数

:当 x ≤ 0 x≤0 x0 时, y = 2 x − 4 y = 2x-4 y=2x4,值域 y ≤ − 4 y≤-4 y4,且 x = 1 2 y + 2 x = \frac{1}{2}y+2 x=21y+2

x > 0 x>0 x>0 时, y = l n ( x + 1 ) y = ln(x+1) y=ln(x+1),值域 y > 0 y>0 y>0,且 x = e y − 1 x = e^y-1 x=ey1

因此反函数为 y = { 1 2 x + 2 x≤-4 e x − 1 x>0 y = \begin{cases} \frac{1}{2}x+2 & \text{x≤-4} \\ e^x-1 & \text{x>0}\end{cases} y={21x+2ex1x≤-4x>0

例2:求函数 y = e x − e − x 2 y = \frac{e^x-e^{-x}}{2} y=2exex 的反函数

:令 e x = t e^x = t ex=t,则 x = l n t , t > 0 x = lnt,t>0 x=lntt>0,则 y = t − t − 1 2 y= \frac{t-t^{-1}}{2} y=2tt1, 从而 t 2 − 2 y t − 1 = 0 t^2-2yt-1=0 t22yt1=0

求解一元二次方程可得 t = y ± y 2 + 1 t = y ± \sqrt{y^2+1} t=y±y2+1 ,舍去负根,有 t = y + y 2 + 1 t = y + \sqrt{y^2+1} t=y+y2+1

即有 e x = y + y 2 + 1 e^x = y + \sqrt{y^2+1} ex=y+y2+1 , 因此反函数为 y = l n ( x + x 2 + 1 ) y = ln(x+\sqrt{x^2+1}) y=ln(x+x2+1 )

3. 复合函数表达式

f ( x ) = { e x x<1 x x≥1 f(x) = \begin{cases} e^x & \text{x<1} \\ x & \text{x≥1}\end{cases} f(x)={exxx<1x≥1 g ( x ) = { x + 3 x<0 x − 2 x≥0 g(x) = \begin{cases} x+3 & \text{x<0} \\ x-2 & \text{x≥0}\end{cases} g(x)={x+3x2x<0x≥0,求 f [ g ( x ) ] f[g(x)] f[g(x)]

:题意得 f ( g ( x ) ) = { e g ( x ) g(x)<1 g ( x ) g(x)≥1 f(g(x)) = \begin{cases} e^g(x) & \text{g(x)<1} \\ g(x) & \text{g(x)≥1}\end{cases} f(g(x))={eg(x)g(x)g(x)<1g(x)≥1,下面进行分类讨论
(1) 当 g ( x ) < 1 g(x)<1 g(x)<1 时,则

{ g ( x ) = x + 3 < 1 x < 0 \begin{cases} g(x) = x + 3 < 1 \\ x < 0 \end{cases}\quad {g(x)=x+3<1x<0 { g ( x ) = x − 2 < 1 x ≥ 0 \quad \begin{cases} g(x) = x - 2 < 1 \\ x ≥ 0 \end{cases} {g(x)=x2<1x0

从而有 f ( x ) = { e x + 3 x<-2 e x − 2 0≤x<3 f(x) = \begin{cases} e^{x + 3} & \text{x<-2} \\ e^{x - 2} & \text{0≤x<3} \end{cases}\quad f(x)={ex+3ex2x<-20≤x<3

(2) 当 g ( x ) ≥ 1 g(x)≥1 g(x)1 时,则

{ g ( x ) = x + 3 ≥ 1 x < 0 \begin{cases} g(x) = x + 3 ≥ 1 \\ x < 0 \end{cases}\quad {g(x)=x+31x<0 { g ( x ) = x − 2 ≥ 1 x ≥ 0 \quad \begin{cases} g(x) = x - 2 ≥ 1 \\ x ≥ 0 \end{cases} {g(x)=x21x0

从而有 f ( x ) = { x + 3 -2≤x<0 x − 2 x≥3 f(x) = \begin{cases} x+3 & \text{-2≤x<0} \\ x-2 & \text{x≥3} \end{cases}\quad f(x)={x+3x2-2≤x<0x≥3

综上所述, f ( x ) = { e x + 3 x<-2 x + 3 -2≤x<0 e x − 2 0≤x<3 x − 2 x≥3 f(x) = \begin{cases} e^{x + 3} & \text{x<-2} \\ x+3 & \text{-2≤x<0} \\ e^{x - 2} & \text{0≤x<3} \\ x-2 & \text{x≥3} \end{cases}\quad f(x)=ex+3x+3ex2x2x<-2-2≤x<00≤x<3x≥3


题型三 函数基本特性

证奇偶、单调、有界、周期:
奇偶: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x) ,定义域关于原点对称。
单调: ∀ x 1 , x 2 ∈ D \forall x_1,x_2 ∈ D x1x2D,且 x 1 < x 2 x_1<x_2 x1<x2 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2)
有界: f ( x ) f(x) f(x) 求导知区间有极大值 M M M ∣ f ( x ) ∣ ≤ M |f(x)| ≤ M f(x)M
周期: f ( x ) = f ( x + T ) f(x) = f(x+T) f(x)=f(x+T)

1. 证明奇偶、单调、有界、周期

奇偶 ∀ x , y ∈ R \forall x,y∈ R xyR,函数 f ( x ) f(x) f(x) 满足 f ( x + y ) = f ( x ) + f ( y ) f(x+y) = f(x)+f(y) f(x+y)=f(x)+f(y),试讨论 f ( x ) f(x) f(x) 的奇偶性。

: 取 y = − x y = -x y=x,则有 f ( 0 ) = f ( x ) + f ( − x ) f(0) = f(x)+f(-x) f(0)=f(x)+f(x),即 f ( 0 ) − f ( x ) = f ( − x ) f(0)-f(x) = f(-x) f(0)f(x)=f(x)
y = 0 y = 0 y=0,则有 f ( x + 0 ) = f ( x ) + f ( 0 ) f(x+0) = f(x)+f(0) f(x+0)=f(x)+f(0),即 f ( 0 ) = 0 f(0) = 0 f(0)=0,因此 − f ( x ) = f ( − x ) -f(x) = f(-x) f(x)=f(x)
f ( x ) f(x) f(x) 的定义域为 R R R 关于原点对称,所以 f ( x ) f(x) f(x) 为奇函数

单调:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [ab] [ b , c ] [b,c] [bc] 上单调递增,证明 f ( x ) f(x) f(x) [ a , c ] [a,c] [ac] 上单调递增。

:设 x 1 < x 2 x_1<x_2 x1<x2 [ a , c ] [a,c] [ac] 上的任意两点,
(1) 若 x 1 , x 2 ∈ [ a , b ] x_1,x_2 ∈ [a,b] x1x2[ab],结论成立;
(2) 若 x 1 , x 2 ∈ [ b , c ] x_1,x_2 ∈ [b,c] x1x2[bc],结论成立;
(3) 若 x 1 ∈ [ a , b ] x_1∈ [a,b] x1[ab] x 2 ∈ [ b , c ] x_2∈ [b,c] x2[bc],则 x 1 , x 2 x_1,x_2 x1x2 不能同时等于 b b b,从而 f ( x 1 ) ≤ f ( b ) ≤ f ( x 2 ) f(x_1)≤f(b)≤f(x_2) f(x1)f(b)f(x2)
等号不能同时成立,因此 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2),因此 f ( x ) f(x) f(x) [ a , c ] [a,c] [ac] 上单调递增。

有界:证明函数 y = x 1 + x 2 y=\frac{x}{1+x^2} y=1+x2x ( − ∞ , + ∞ ) (-∞,+∞) (+) 内有界。

:显然 f ( x ) f(x) f(x) 是奇函数,所以只要证明当 x ∈ ( 0 , + ∞ ) x∈(0,+∞) x(0+) 时, ∣ f ( x ) ∣ ≤ M |f(x)|≤ M f(x)M 即可
f ( x ) = x 1 + x 2 f(x)=\frac{x}{1+x^2} f(x)=1+x2x,求导 f ′ ( x ) = 1 − x 2 ( 1 + x 2 ) 2 , x = ± 1 f'(x)=\frac{1-x^2}{(1+x^2)^2},x=±1 f(x)=(1+x2)21x2x=±1
x = 1 x=1 x=1,当 x ∈ ( 0 , 1 ) x∈(0,1) x(01) 时, f ( x ) f(x) f(x) 单调递增;当 x ∈ ( 1 , + ∞ ) x∈(1,+∞) x(1+) 时, f ( x ) f(x) f(x) 单调递减; f ( x ) > 0 f(x)>0 f(x)>0
所以当 x ∈ ( 0 , + ∞ ) x∈(0,+∞) x(0+) 时, f ( x ) f(x) f(x) 极大值 M M M,即 ∣ f ( x ) ∣ ≤ M |f(x)|≤ M f(x)M

周期:设 ∀ x ∈ R \forall x ∈ R xR f ( 1 2 + x ) = 1 2 + f ( x ) − f 2 ( x ) f(\frac{1}{2} + x ) = \frac{1}{2} + \sqrt{f(x)-f^2(x)} f(21+x)=21+f(x)f2(x) ,试求 f ( x ) f(x) f(x) 的周期。

f [ 1 2 + ( 1 2 + x ) ] = 1 2 + f ( 1 2 + x ) − f 2 ( 1 2 + x ) = 1 2 + 1 4 − f ( x ) + f 2 ( x ) = 1 2 + [ f ( x ) − 1 2 ] 2 f[\frac{1}{2}+(\frac{1}{2}+x)] = \frac{1}{2} + \sqrt{f(\frac{1}{2}+x)-f^2(\frac{1}{2}+x)} = \frac{1}{2} + \sqrt{\frac{1}{4}-f(x)+f^2(x)}=\frac{1}{2} + \sqrt{[f(x)-\frac{1}{2}]^2} f[21+(21+x)]=21+f(21+x)f2(21+x) =21+41f(x)+f2(x) =21+[f(x)21]2

f ( 1 2 + x ) ≥ 1 2 f(\frac{1}{2} +x) ≥ \frac{1}{2} f(21+x)21,所以 f ( x ) ≥ 1 2 f(x)≥ \frac{1}{2} f(x)21,进而 f ( x + 1 ) = 1 2 + [ f ( x ) − 1 2 ] = f ( x ) f(x+1) = \frac{1}{2} + [f(x)-\frac{1}{2}] = f(x) f(x+1)=21+[f(x)21]=f(x),可知 f ( x ) f(x) f(x) 周期为1。

证非奇偶、不单调、无界、非周期: 使用反证法,根据定义设置假设,寻找特定值反驳原假设。
非奇偶: f ( − x ) ≠ − f ( x ) f(-x)≠-f(x) f(x)=f(x) 或 定义域不关于原点对称。
单调: ∀ x 1 , x 2 , x 3 ∈ D \forall x_1,x_2,x_3 ∈ D x1x2x3D,且 x 1 < x 2 < x 3 x_1<x_2<x_3 x1<x2<x3 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2),但 f ( x 2 ) > f ( x 3 ) f(x_2) > f(x_3) f(x2)>f(x3)
无界: ∣ f ( x ) ∣ > M |f(x)| > M f(x)>M
非周期: T T T 不是常数或不存在

2. 证明不单调、无界、非周期

不单调:证明函数 f ( x ) = s i n 1 x f(x) = sin\frac{1}{x} f(x)=sinx1 在定义域内不单调。

:取 x 1 = 3 2 π , x 2 = 2 π , x 3 = 6 π x_1 = \frac{3}{2π},x_2 = \frac{2}{π},x_3 = \frac{6}{π} x1=2π3x2=π2x3=π6,且 x 1 < x 2 < x 3 x_1<x_2<x_3 x1<x2<x3

f ( x 1 ) = s i n ( 2 π 3 ) = 3 2 f(x_1) = sin(\frac{2π}{3}) = \frac{\sqrt{3}}{2} f(x1)=sin(32π)=23 f ( x 2 ) = s i n ( π 2 ) = 1 f(x_2) = sin(\frac{π}{2}) =1 f(x2)=sin(2π)=1 f ( x 3 ) = s i n ( π 6 ) = 1 2 f(x_3) = sin(\frac{π}{6}) = \frac{1}{2} f(x3)=sin(6π)=21

可知 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2),但 f ( x 2 ) > f ( x 3 ) f(x_2) > f(x_3) f(x2)>f(x3),所以函数 f ( x ) = s i n 1 x f(x) = sin\frac{1}{x} f(x)=sinx1 在定义域内不单调。

无界:证明函数 f ( x ) = x s i n x f(x) = xsinx f(x)=xsinx ( 0 , + ∞ ) (0,+∞) (0+) 上无上界。

:假设 f ( x ) = x s i n x f(x)=xsinx f(x)=xsinx ( 0 , + ∞ ) (0,+∞) (0+) 上有界,则存在 M > 0 M>0 M>0,使得对 ∀ x ∈ ( 0 , + ∞ ) \forall x ∈(0,+∞) x(0+),有 ∣ x s i n x ∣ < M |xsinx| < M xsinx<M

x = 2 n π + π 2 x = 2nπ+\frac{π}{2} x=2nπ+2π,则 ∣ x s i n x ∣ = 2 n π + π 2 < M |xsinx| = 2nπ+ \frac{π}{2}< M xsinx=2nπ+2π<M,当 n n n 足够大时不成立,故函数 f ( x ) = x s i n x f(x) = xsinx f(x)=xsinx ( 0 , + ∞ ) (0,+∞) (0+) 上无上界

非周期
例1:证明函数 f ( x ) = s i n 1 x f(x) = sin\frac{1}{x} f(x)=sinx1 在定义域内非周期函数。
:假设 f ( x ) = s i n 1 x f(x) = sin\frac{1}{x} f(x)=sinx1 是周期函数,则 ∃ \exists 正数 T T T,定义域内的每个 x x x

\qquad \qquad \qquad \qquad \quad s i n 1 x = s i n 1 x + T sin\frac{1}{x} = sin\frac{1}{x+T} sinx1=sinx+T1

因此 1 x = 1 x + T + 2 k π , k ∈ Z \frac{1}{x} = \frac{1}{x+T} + 2kπ,k∈Z x1=x+T1+2kπkZ,则 T = 2 k π x 2 1 − 2 k π x T = \frac{2kπx^2}{1-2kπx} T=12kπx2kπx2,显然 T T T 不是常数, f ( x ) = s i n 1 x f(x) = sin\frac{1}{x} f(x)=sinx1 非周期函数

例2:证明函数 f ( x ) = x c o s x f(x) = xcosx f(x)=xcosx 在定义域内非周期函数。
:假设 f ( x ) = x c o s x f(x) = xcosx f(x)=xcosx 是周期函数,则 ∃ \exists 正数 T T T,定义域内的每个 x x x

\qquad \qquad \qquad \qquad \quad ( x + T ) c o s ( x + T ) = x c o s x (x+T)cos(x+T) = xcosx (x+T)cos(x+T)=xcosx

x = 0 x=0 x=0,则有 T c o s T = 0 TcosT=0 TcosT=0,从而 c o s T = 0 cosT=0 cosT=0,即 T = k π + π 2 , k = 0 , ± 1 , ± 2 , … T=kπ+\frac{π}{2},k=0,±1,±2,… T=kπ+2πk=0±1±2

x = T x=T x=T,则有 2 T c o s 2 T = T c o s T = 0 2Tcos2T=TcosT=0 2Tcos2T=TcosT=0,从而 c o s ( 2 T ) = 0 cos(2T)=0 cos(2T)=0
c o s ( 2 T ) = c o s ( 2 k π + π ) = − 1 cos(2T)=cos(2kπ+π)=-1 cos(2T)=cos(2kπ+π)=1,矛盾,因此 f ( x ) = x c o s x f(x) = xcosx f(x)=xcosx 非周期函数

参考资料

《微积分同步练习与模拟试题》刘强,孙激流

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值