一维前缀和
这个优化主要是用来在O(1)时间内求出一个序列a中,a[i]+a[i+1]+……+a[j]的和。
具体原理十分简单:用sum[i]表示(a[1]+a[2]+……+a[i]),其中sum[0]=0,则(a[i]+a[i+1]+……+a[j])即等于sum[j]-sum[i-1]。
二维前缀和
同理,有一维就有二维。对于一个矩阵a,我们也能在O(1)时间内求出子矩阵[x1~x2][y1~y2]的和。
设sum[i][j]为子矩阵[1~i][1~j]的和。则由容斥原理得:
sum[0][j]=sum[i][0]=0
a[x1~x2][y1~y2]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]
应用问题
核心就两个字:降维。
面对许多高维问题,往往前缀和是最先想到的降维方法。
这样在降维的基础上,许多更进一步的优化才能实现。