前缀和问题

本文详细介绍了前缀和在解决一系列算法问题时的优化应用,包括一维和二维场景。通过前缀和的引入,可以将复杂度从O(n^2)降低到O(1),显著提升效率。核心在于利用sum[i]表示从a[1]到a[i]的累加和,从而简化计算过程。
摘要由CSDN通过智能技术生成

一维前缀和

这个优化主要是用来在O(1)时间内求出一个序列a中,a[i]+a[i+1]+……+a[j]的和。

具体原理十分简单:用sum[i]表示(a[1]+a[2]+……+a[i]),其中sum[0]=0,则(a[i]+a[i+1]+……+a[j])即等于sum[j]-sum[i-1]

二维前缀和

同理,有一维就有二维。对于一个矩阵a,我们也能在O(1)时间内求出子矩阵[x1~x2][y1~y2]的和。

设sum[i][j]为子矩阵[1~i][1~j]的和。则由容斥原理得:

sum[0][j]=sum[i][0]=0

a[x1~x2][y1~y2]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]

应用问题

核心就两个字:降维

面对许多高维问题,往往前缀和是最先想到的降维方法。
这样在降维的基础上,许多更进一步的优化才能实现。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值