1.先在anaconda环境下创建一个新的虚拟环境
conda create -n syftpy python=3.7 --yes
2.下载pytorch版本1.4.0
(这里可以设置清华镜像后下载,但是自己设置镜像后总是连接错误,于是使用默认管道下载,而且发现早上的时候下载比晚上快的多。)
# 添加清华源的pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --show # 查看管道设置命令:
# 删除刚才添加的镜像源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
(因为我们安装的是pysyft0.2.4 对应的pytorch应该是1.4.0 ,所以这里我们先安装一下pytorch)
conda activate syftpy # 进入虚拟环境
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 # 下载cuda(10.1)版本pytorch -c pytorch
# conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch #下载CPU版本pytorch
3.安装pysyft 0.2.4
pip3 install syft==0.2.4 --no-dependencies
4.安装pysyft依赖
pip install lz4~=3.0.2 msgpack~=1.0.0 phe~=1.4.0 scipy~=1.4.1 syft-proto~=0.2.5.a1 tblib~=1.6.0 websocket-client~=0.57.0 pip install websockets~=8.1.0 zstd~=1.4.4.0 Flask~=1.1.1 tornado==4.5.3 flask-socketio~=4.2.1 lz4~=3.0.2 Pillow~=6.2.2 pip install requests~=2.22.0 numpy~=1.18.1
自己安装到这里就全部成功了,可以进行pysyft的测试了。
但是有些会因为某些依赖版本太高的问题,需要我们手动进行安装,
install xxx 对应版本。具体的请参考下面的文章:
https://www.cnblogs.com/mlblog27/p/14258662.html