CANE:上下文相关动态图网络表示

相关阅读: 

TL;DR

目前大多数的Graph Embedding 方法仅对每个顶点生成一个固定不变的向量表示,而这会带来两个问题:

  • 静态向量无法处理 同一节点不同邻居节点 交互时呈现的不同含义aspect;如下图,一个学者可以和不同的合作者就不同的合作方向进行合作;

  • 这些方法产生的节点向量通常会使得 同一节点不同邻居节点 的向量也彼此相似,这显然在现实中是不合理的。如下图,左右两个学者的向量应该是相距较远的,因为他们共同关注的话题较少。

为解决上述问题,论文 CANE: Context-Aware Network Embedding for Relation Modeling[1] 提出了 Context-Aware Network Embedding (CANE) 框架,以学习节点的上下文相关向量表示。具体而言,CANE模型考虑了节点丰富的外部属性,如文本、标签等,利用 Attention 机制建模复杂网络关系,最终产出动态上下文相关向量。

模型

为了充分利用数据的结构信息和文本信息,同事更好地刻画网络,CANE 为每个节点设置了两个Embedding

  • 结构向量 :获取网络的结构信息

  • 文本向量 :获取网络的顶点文本信息

最终节点的向量表示为 ,其中 既可以是静态的,也可以是动态的, 是动态的,因此最后整体向量表示是上下文相关的。

文本向量
上下文无关文本向量

有很多神经网络模型可以从单词序列中获取文本 embedding,包括 CNN,RNN 等。论文中作者研究了多个模型,包括 CNN 、双向 RNNGRU ,最终选择了效果最好的 CNN

CNN就不需要多说了吧~

上下文相关文本向量

静态文本向量获取很简单,那怎么获取动态文本向量呢?

整体模型如下所示。给定一条边 以及顶点 的文本序列和顶点 的文本序列,对两个序列分别过CNN后获得句子表示 。然后利用注意力矩阵 对两个序列进行交互,得到相关性矩阵:

其中 表示节点u中第 个元素和节点v中第 个元素的相关性打分。

之后我们对 矩阵 row pooling + softmax 得到 的注意力向量,对 矩阵 column pooling + softmax 得到 的注意力向量,

最终  和 的上下文相关文本向量分别为:

目标函数

CANE 的目标函数为:

其中 由两部分组成:基于结构的目标函数以及基于文本的目标函数。

  • 基于结构的目标函数:假设网络是有向的(无向边可以视为两个方向相反、权重相等的有向边),基于结构的目标函数旨在通过结构embedding 来最大化有向边的对数似然:

    LINE 一样,我们定义已知顶点 的条件下存在边 的概率为:

  • 基于文本的目标函数:现实世界网络中的顶点通常会伴随关联的文本信息,因此我们可以利用这些文本信息来学习基于文本的顶点 embedding

    基于文本的目标函数 有多种形式。为了和 保持一致,我们定义 为:

    其中:

    • 控制了对应部分的权重

    • 条件概率 将两种类型的顶点 embedding 映射到相同的表达空间中,其计算公式也采用类似 softmax

实验

链接预测
顶点分类
可视化

一起交流

想和你一起学习进步!『NewBeeNLP』目前已经建立了多个不同方向交流群(机器学习 / 深度学习 / 自然语言处理 / 搜索推荐 / 图网络 / 面试交流 / 等),名额有限,赶紧添加下方微信加入一起讨论交流吧!(注意一定要备注信息才能通过)

本文参考资料

[1]

CANE: Context-Aware Network Embedding for Relation Modeling: https://www.aclweb.org/anthology/P17-1158/

END -



首篇NLP图神经网络综述!127页文档让你全面了解这个领域

2021-06-19

Keras正式从TensorFlow分离:结束API混乱与耗时编译

2021-06-18

样本量极少如何机器学习?最新Few-Shot Learning综述

2021-06-16

心路分享 | 2022暑期算法实习复盘

2021-06-15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值