写在前面
XGBoost原理已在前一篇有过说明:机器学习算法总结之XGBoost(上)
本文思路与之前一篇GBDT调参( 基于scikit-learn的梯度提升树GBDT调参学习)思路相同,先遍历xgboost算法所有参数,明白其意思之后开始实战调参,数据集我还是打算选择Kaggle上的Titanic: Machine Learning from Disaster,保持工作一致性。
参考资料:XGBoost参数 官方文档
Complete Guide to Parameter Tuning in XGBoost (with codes in Python)
XGBoost参数调优完全指南(附Python代码) (上面的翻译版本)
1. XGBoost模型概述
XGBoost的作者把所有的参数分成了三类:
1、通用参数:宏观函数控制。
2、Booster参数:控制每一步的booster(tree/regression)。
3、学习目标参数:控制训练目标的表现。
2. XGBoost通用参数
(1)booster(默认gbtree):
选择每次迭代的模型,有两种选择:gbtree(基于树的模型)和gbliner(线性模型)
(2)silent(默认0):
当这个参数值为1时,静默模式开启,不会输出任何信息。
一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
(3)nthread(默认为最大可能的线程数):
这个参数用来进行多线程控制,应当输入系统的核数。
如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
此外还有两个参数num_pbuffer和num_feature,由xgboost自动设置,用户不用管。
3.Booster参数
前面提及有两种booster可选,但是实践表明tree的模型效果更好,linear很少用到。
(1)eta(默认0.3):
和GBDT中的 learning rate 参数类似。通过减少每一步的权重,可以提高模型的鲁棒性。
典型值为0.01-0.2。
(2)min_child_weight(默认1):
决定最小叶子节点样本权重和。和GBDT的 min_child_leaf 参数类似,但不完全一样。
XGBoost的这个参数是最小样本权重的和,而GBDT参数是最小样本总数。
这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
(3)max_depth(默认6):
和GBM中的参数相同,这个值为树的最大深度。
这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
需要使用CV函数来进行调优。
典型值:3-10
(4)max_leaf_nodes:
树上最大的节点或叶子的数量。
可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n方个叶子。
如果定义了这个参数,GBM会忽略max_depth参数。
(5)gamma(默认0):
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。
Gamma指定了节点分裂所需的最小损失函数下降值。
这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的
(6)max_delta_step(默认0):
这参数限制每棵树权重改变的最大步长。
如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
这个参数一般用不到,但是你可以挖掘出来它更多的用处。
(7)subsample(默认1):
和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
典型值:0.5-1
(8)colsample_bylevel(默认1):
用来控制树的每一级的每一次分裂,对列数的采样的占比。
典型值:0.5-1
(9)colsample_bytree(默认1):
和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)
典型值:0.5-1
(10)lambda(默认1):
权重的L2正则化项。(和Ridge regression类似)。
这个参数是用来控制XGBoost的正则化部分的,增大这个值会使得模型更为保守
(11)alpha(默认0):
权重的L1正则化项。(和Lasso regression类似),增大这个值会使得模型更为保守
可以应用在很高维度的情况下,使得算法的速度更快。
(12)scale_pos_weight(默认1):
在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
4.学习目标参数
(1)objective(默认reg:linear):
这个参数定义需要被最小化的损失函数。最常用的值有:
binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。
multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。
在这种情况下,你还需要多设一个参数:num_class(类别数目)。
multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。
(2)eval_metric(默认值取决于objective参数的取值):
对于有效数据的度量方法。
对于回归问题,默认值是rmse,对于分类问题,默认值是error。
典型值有:
rmse 均方根误差
mae 平均绝对误差
logloss 负对数似然函数值
error 二分类错误率(阈值为0.5)
merror 多分类错误率
mlogloss 多分类logloss损失函数
auc 曲线下面积
(3)seed(默认0):
随机数种子。设置它可以复现随机数据的结果,也可以用于调整参数
5.XGBoost调参实例
给出官方code样例:XGBoost Demo Codes (xgboost GitHub repository)
接下来继续接着上次GBDT的数据集调参,希望能在前一次尝试上得分更高。