【机器学习】XGBoost 原理及调参指南 整理

XGBoost

XGBoost能自动利用cpu的多线程,而且适当改进了gradient boosting,加了剪枝,控制了模型的复杂程度

  • 传统GBDT以CART作为基分类器,特指梯度提升决策树算法,而XGBoost还支持线性分类器(gblinear),这个时候XGBoost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。

  • 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。

  • xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。

  • xgboost中树节点分裂时所采用的公式:

  • Shrinkage(缩减),相当于学习速率(xgboost中的eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(传统GBDT的实现也有学习速率)

  • 列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。

  • 对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。

  • xgboost工具支持并行。注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。(特征粒度上的并行,block结构,预排序)

  • 这个公式形式上跟ID3算法、CART算法是一致的,都是用分裂后的某种值减去分裂前的某种值,从而得到增益。为了限制树的生长,我们可以加入阈值,当增益大于阈值时才让节点分裂,上式中的gamma即阈值,它是正则项里叶子节点数T的系数,所以xgboost在优化目标函数的同时相当于做了预剪枝。另外,上式中还有一个系数lambda,是正则项里leaf score的L2模平方的系数,对leaf score做了平滑,也起到了防止过拟合的作用,这个是传统GBDT里不具备的特性。

  • XGBoost实现层面

  • 内置交叉验证方法

  • 能够输出特征重要性文件辅助特征筛选

XGBoost优势小结:

  • 显式地将树模型的复杂度作为正则项加在优化目标

  • 公式推导里用到了二阶导数信息,而普通的GBDT只用到一阶

  • 允许使用列抽样(column(feature) sampling)来防止过拟合,借鉴了Random Forest的思想,sklearn里的gbm好像也有类似实现。

  • 实现了一种分裂节点寻找的近似算法,用于加速和减小内存消耗。

  • 节点分裂算法能自动利用特征的稀疏性。

  • 样本数据事先排好序并以block的形式存储,利于并行计算

  • penalty function Omega主要是对树的叶子数和叶子分数做惩罚,这点确保了树的简单性。

  • 支持分布式计算可以运行在MPI,YARN上,得益于底层支持容错的分布式通信框架rabit。

 

XGBoost算法已经成为数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。
构造一个使用XGBoost的模型十分简单。但是,提高这个模型的表现,调参很困难。

一、xgBoost优势

XGBoost算法可以给预测模型带来能力的提升。当你对它的高准确率背后的原理有更多了解的时候,就会发现它具有很多优势:

1 正则化

    标准GBM的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。
    实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。

2 并行处理

    XGBoost可以实现并行处理,相比GBM有了速度的飞跃。
    然而,Boosting算法是顺序处理的,它是如何并行的呢?
    每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?
    XGBoost 也支持Hadoop实现。

3 高度的灵活性

    XGBoost 允许用户定义自定义优化目标和评价标准
    它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。

4 缺失值处理

    XGBoost内置处理缺失值的规则。
    用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。
    XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。

5 剪枝

    当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。
    XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。
    这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。
    GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,
    因此会保留这两个分裂。

6 内置交叉验证

    XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。
    而GBM使用网格搜索,只能检测有限个值。

7、在已有的模型基础上继续

    XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。
    sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。

相信你已经对XGBoost强大的功能有了点概念。

 

二、XGBoost的参数

XGBoost的作者把所有的参数分成了三类:

  1. 通用参数:宏观函数控制。
  2. Booster参数:控制每一步的booster(tree/regression)。
  3. 学习目标参数:控制训练目标的表现。

在这里会类比GBM来讲解,所以作为一种基础知识,强烈推荐先阅读这篇文章

1 通用参数

这些参数用来控制XGBoost的宏观功能。

1、booster[默认gbtree]

  • 选择每次迭代的模型,有两种选择: 
    gbtree:基于树的模型 
    gbliner:线性模型

2、silent[默认0]

  • 当这个参数值为1时,静默模式开启,不会输出任何信息。
  • 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。

3、nthread[默认值为最大可能的线程数]

  • 这个参数用来进行多线程控制,应当输入系统的核数。
  • 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。

还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。

2 booster参数

尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

1、eta[默认0.3]

  • 和GBM中的 learning rate 参数类似。
  • 通过减少每一步的权重,可以提高模型的鲁棒性。
  • 典型值为0.01-0.2。

2、min_child_weight[默认1]

  • 决定最小叶子节点样本权重和。
  • 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
  • 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
  • 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。

3、max_depth[默认6]

  • 和GBM中的参数相同,这个值为树的最大深度。
  • 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
  • 需要使用CV函数来进行调优。
  • 典型值:3-10

4、max_leaf_nodes

  • 树上最大的节点或叶子的数量。
  • 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2n2个叶子。
  • 如果定义了这个参数,GBM会忽略max_depth参数。

5、gamma[默认0]

  • 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
  • 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

6、max_delta_step[默认0]

  • 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
  • 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
  • 这个参数一般用不到,但是你可以挖掘出来它更多的用处。

7、subsample[默认1]

  • 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
  • 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
  • 典型值:0.5-1

8、colsample_bytree[默认1]

  • 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
  • 典型值:0.5-1

9、colsample_bylevel[默认1]

  • 用来控制树的每一级的每一次分裂,对列数的采样的占比。
  • 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。

10、lambda[默认1]

  • 权重的L2正则化项。(和Ridge regression类似)。
  • 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

11、alpha[默认1]

  • 权重的L1正则化项。(和Lasso regression类似)。
  • 可以应用在很高维度的情况下,使得算法的速度更快。

12、scale_pos_weight[默认1]

  • 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

3学习目标参数

这个参数用来控制理想的优化目标和每一步结果的度量方法。

1、objective[默认reg:linear]

  • 这个参数定义需要被最小化的损失函数。最常用的值有: 
    • binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。
    • multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。 
      • 在这种情况下,你还需要多设一个参数:num_class(类别数目)。
    • multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。

2、eval_metric[默认值取决于objective参数的取值]

  • 对于有效数据的度量方法。
  • 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
  • 典型值有: 
    • rmse 均方根误差(∑Ni=1ϵ2N−−−−−√∑i=1Nϵ2N)
    • mae 平均绝对误差(∑Ni=1|ϵ|N∑i=1N|ϵ|N)
    • logloss 负对数似然函数值
    • error 二分类错误率(阈值为0.5)
    • merror 多分类错误率
    • mlogloss 多分类logloss损失函数
    • auc 曲线下面积

3、seed(默认0)

  • 随机数的种子
  • 设置它可以复现随机数据的结果,也可以用于调整参数

python的XGBoost模块有sklearn包。包中的参数是按sklearn风格命名。会改变的函数名是:

1、eta -> learning_rate 
2、lambda -> reg_lambda 
3、alpha -> reg_alpha

推荐阅读:

XGBoost Parameters (official guide) 
XGBoost Demo Codes (xgboost GitHub repository) 
Python API Reference (official guide)

spark maven 项目配置

scala:2.11.0

jdk:1.8

xgboost:0.72

spark:必须要2.3.0及其以上,否则会出千奇百怪的错

    <java.version>1.8</java.version>
    <spark.version>2.3.0</spark.version>
    <hadoop.version>2.7.3</hadoop.version>

    <dependency>
        <groupId>ml.dmlc</groupId>
        <artifactId>xgboost4j</artifactId>
        <version>0.72</version>
    </dependency>
    <dependency>
        <groupId>ml.dmlc</groupId>
        <artifactId>xgboost4j-spark</artifactId>
        <version>0.72</version>
    </dependency>
import ml.dmlc.xgboost4j.scala.spark.XGBoost
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.feature._
import org.apache.spark.sql._
 
 
 
object myCallXGBoost {
  Logger.getLogger("org").setLevel(Level.WARN)
 
  def main(args: Array[String]): Unit = {
    val inputPath = "/Users/01376233/IdeaProjects/myxgboost/src/main/data"
 
    // create SparkSession
    val spark = SparkSession
      .builder()
      .appName("SimpleXGBoost Application")
      .config("spark.executor.memory", "2G")
      .config("spark.executor.cores", "4")
      .config("hive.metastore.uris","thrift://10.202.77.200:9083")
      .config("spark.driver.memory", "1G")
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .config("spark.default.parallelism", "4")
      .enableHiveSupport()
      //.master("local[*]")
      .getOrCreate()
 
    //从csv中读取数据
    //val myTrainCsv = spark.read.option("header", "true").option("inferSchema", true).csv(inputPath + "/my_train.csv")
    //val myTestCsv = spark.read.option("header", "true").option("inferSchema", true).csv(inputPath + "/my_test.csv")
 
    //从hive中读取数据
    val myTrainCsv = spark.sql("select * from dm_analysis.lsm_xgboost_train")
    val myTestCsv = spark.sql("select * from dm_analysis.lsm_xgboost_test")
 
 
 
    //println(myTrainCsv.getClass.getSimpleName)      //Dataset
    //sys.exit()
    //myTrainCsv.show(10)
 
    //把特征转化为一个vector
    //将多列的特征转化为一个vector,这个vector叫features
    val vectorAssembler = new VectorAssembler()
      .setInputCols(Array("iswork","rank","cntLag1","cntLag2","Monday",
        "Saturday","Sunday","Thursday","Tuesday","Wednesday",
        "August","December","February","January","July","June","March"
        ,"May","November","October","September","lateMonth","midMonth"))
      .setOutputCol("features")
 
 
    val xGBoostTrainInput = vectorAssembler.transform(myTrainCsv).drop("_c0").withColumnRenamed("cnt","label").select("features", "label")
 
    val xGBoostTestInput = vectorAssembler.transform(myTestCsv).select("features")
    xGBoostTestInput.show(10)
    //sys.exit()
 
    //sys.exit()
    // number of iterations
    val numRound = 10
    val numWorkers = 4
    // training parameters
    val paramMap = List(
      "colsample_bytree" -> 1,
      "eta" -> 0.05f,                        //就是学习率
      "max_depth" -> 8,                       //树的最大深度
      "min_child_weight" -> 5,                //
      "n_estimators" -> 120,
      "subsample" -> 0.7
      ).toMap
 
 
    println("Starting Xgboost ")
 
    //val a = new XGBoostRegressionModel
 
    val xgBoostModel = XGBoost.trainWithDataFrame(xGBoostTrainInput, paramMap, round = 10, nWorkers = 4, useExternalMemory = true)
 
    val output = xgBoostModel.transform(xGBoostTestInput)
 
    output.show()
  }
}


 

 

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
XGBoost是一种非常强大的机器学习算法,但是它的调参比较复杂。下面是XGBoost超参数调参的步骤及代码: 1. 确定参数范围:首先需要确定每个超参数的范围,可以根据经验或者网上资料来确定。常见的超参数包括learning_rate、max_depth、min_child_weight、subsample、colsample_bytree等。 ``` # 设置超参数的范围 param_grid = { 'learning_rate': [0.01, 0.05, 0.1, 0.15, 0.2], 'max_depth': [3, 4, 5, 6, 7], 'min_child_weight': [1, 3, 5, 7], 'subsample': [0.6, 0.7, 0.8, 0.9], 'colsample_bytree': [0.6, 0.7, 0.8, 0.9], } ``` 2. 网格搜索:使用GridSearchCV函数进行网格搜索,该函数会遍历所有可能的超参数组合,并返回最优的超参数。 ``` from sklearn.model_selection import GridSearchCV # 定义XGBoost模型 xgb_model = xgb.XGBClassifier() # 进行网格搜索 grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, cv=5, n_jobs=-1) # 拟合训练数据 grid_search.fit(train_X, train_y) # 输出最优的超参数 print(grid_search.best_params_) ``` 3. 随机搜索:如果网格搜索的超参数范围比较大,那么计算量可能会很大,这时候可以使用随机搜索来减少计算量。随机搜索会在超参数范围内随机选择若干个超参数组合进行训练,并返回最优的超参数。 ``` from sklearn.model_selection import RandomizedSearchCV # 定义XGBoost模型 xgb_model = xgb.XGBClassifier() # 进行随机搜索 random_search = RandomizedSearchCV(estimator=xgb_model, param_distributions=param_grid, cv=5, n_jobs=-1, n_iter=20) # 拟合训练数据 random_search.fit(train_X, train_y) # 输出最优的超参数 print(random_search.best_params_) ``` 4. 调整学习率:学习率是XGBoost中非常重要的超参数,它控制每次迭代的步长。如果学习率过大,可能会导致算法无法收敛;如果学习率过小,可能会导致算法收敛速度过慢。因此,需要在确定好其他超参数后,再调整学习率。 ``` # 定义XGBoost模型 xgb_model = xgb.XGBClassifier(learning_rate=0.1, max_depth=5, min_child_weight=3, subsample=0.8, colsample_bytree=0.8) # 训练模型 xgb_model.fit(train_X, train_y, eval_metric='auc') # 调整学习率 learning_rates = [0.01, 0.05, 0.1, 0.15, 0.2] for learning_rate in learning_rates: xgb_model.set_params(learning_rate=learning_rate) xgb_model.fit(train_X, train_y, eval_metric='auc') print("Learning rate: ", learning_rate) print("Accuracy score (train): {0:.3f}".format(xgb_model.score(train_X, train_y))) print("Accuracy score (test): {0:.3f}".format(xgb_model.score(test_X, test_y))) ``` 以上就是XGBoost超参数调参的步骤及代码。需要注意的是,调参是一个反复试错的过程,需要不断地尝试不同的超参数组合,并根据模型的表现来调整超参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值