CNN中为什么使用ReLu作为激活函数

为什么要使用激活函数?

我们训练的神经网络模型,就是从输入到输出的一个神秘未知函数映射。我们并不知道具体的内容,只能尽可能无限的逼近它。
如果不使用激活函数,那么输出只能是线性的。
如果使用了非线性激活函数,那么就可以输出非线性函数,就可以无限逼近复杂函数。

为什么激活函数必须是非线性的?

如果是线性激活函数,不管隐藏层多深,输出永远是输入的线性组合,这样就与没有隐藏层结果相当,所以需要引入非线性激活函数。

为什么CNN中要使用ReLu?

1.使用sigmoid时,涉及到指数运算,反向传播时求导涉及到除法,计算量大。而采用ReLu函数时,整个过程计算节省很多

2.sigmoid容易产生梯度消失(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失。)

3.ReLu会使一部分神经元输出为0,造成网络的稀疏性,减少了参数之间的依存性,减少了过拟合的情况

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在计算机视觉方向上,使用ReLU作为CNN(卷积神经网络)的激活函数有以下好处: 1. 加速收敛速度:ReLU的非线性特性可以帮助网络更快地收敛。相比于传统的激活函数如sigmoid和tanh,ReLU在正区间的斜率恒为1,避免了梯度消失的问题,从而加速了网络的训练速度。 2. 提高模型表达能力:ReLU的非线性特性可以更好地拟合复杂的函数关系,从而提高模型的表达能力。在计算机视觉任务,图像往往具有复杂的非线性特征,ReLU可以更好地捕捉这些特征,从而提高模型的准确性。 3. 抑制不必要的响应:ReLU在输入为负数时输出为0,实现了稀疏激活性。这意味着一些神经元可以完全不被激活,从而抑制不必要的响应。在计算机视觉任务,许多图像区域可能是背景或无关区域,ReLU可以帮助网络忽略这些区域,提高模型的鲁棒性和泛化能力。 4. 减少过拟合风险:ReLU的稀疏激活性有助于减少模型的参数数量,降低了过拟合的风险。过拟合是指模型在训练数据上表现很好,但在测试数据上表现较差的现象。通过使用ReLU作为激活函数,可以降低模型的复杂度,提高泛化能力,从而减少过拟合的问题。 综上所述,ReLU作为CNN激活函数在计算机视觉方向上具有加速收敛速度、提高模型表达能力、抑制不必要的响应和减少过拟合风险等好处,因此被广泛应用于图像分类、目标检测、图像分割等计算机视觉任务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值