CNN模型中 卷积层 RELU层 池化层 作用及顺序

卷积层  Convolutional layer

卷积运算的目的是提取输入的不同特征

类似于CV中的滤波,通过滑动窗口来得到特征图像

非线性激活层  Relu

f(x)=max(0,x)

非线性激活层即保留大于0的值,即保留特征比较好的值,将特征小于0的值舍去

池化层  pooling

池化(Pooling):也称为欠采样下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性

 

一般是 卷积层 -> relu -> 池化层


 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值