卷积层 Convolutional layer
卷积运算的目的是提取输入的不同特征
类似于CV中的滤波,通过滑动窗口来得到特征图像
非线性激活层 Relu
f(x)=max(0,x)
非线性激活层即保留大于0的值,即保留特征比较好的值,将特征小于0的值舍去
池化层 pooling
池化(Pooling):也称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性
一般是 卷积层 -> relu -> 池化层
卷积运算的目的是提取输入的不同特征
类似于CV中的滤波,通过滑动窗口来得到特征图像
f(x)=max(0,x)
非线性激活层即保留大于0的值,即保留特征比较好的值,将特征小于0的值舍去
池化(Pooling):也称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性