LCIS

LCIS问题:给定字符串a,字符串b,求a和b的LCIS(最长公共上升子序列)。

 ——————————————————————————————————————

(贴个原解

可以看到,这个问题具有相当多的重叠子问题,LIS与LCS也是经典的dp问题。于是我们想到用DP搞。DP的首要任务是什么?定义状态:

定义状态:F[i][j]表示以a串的前i个字符b串的前j个字符且以b[j]为结尾构成的LCIS的长度。

我们来考察一下这个这个状态,思考这个状态能转移到哪些状态似乎有些棘手;

如果把思路逆转一下,考察这个状态的最优值依赖于哪些状态,就容易许多了。


首先,在a[i]!=b[j]的时候有F[i][j]=F[i-1][j]。

为什么呢?因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0,那么就说明a[x](1<=x<=i)中,必然有一个字符a[k]等于b[j](如果F[i][j]等于0呢?那赋值与否都没有什么影响了)。

因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。这一点参考LCS的处理方法。


那如果a[i]==b[j]呢?

首先,这个等于起码保证了长度为1的LCIS;然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。

之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。(为什么只能是i-1?①i已经被配对,无法再使用,②i-1必然比i-2要差)

第二维呢?那就需要枚举b[1]..b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。

这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑第一种情况中F[i][j]=F[i-1][j]的决策呢?答案是不需要。

因为如果b[j]不和a[i]配对,那就是和之前的a[1]..a[i-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。

(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i`配对则是max(F[i`-1][k])+1,显然有F[i][j]>F[i`][j],i`>i)

于是我们得出了状态转移方程:

$a[i]!=b[j]:F[i][j]=F[i-1][j]$

$a[i]==b[j]:F[i][j]={max(F[i-1][k])+1|1<=k<=j-1&&b[j]>b[k]}$

int mx=0;
	for(int j=1;j<=n;j++)
		for(int i=1;i<=m;i++){
			if(b[j]!=a[i])dp[i][j]=dp[i-1][j];
			else{
				for(int k=1;k<j;k++)
					if(dp[i][j]<dp[i-1][k]&&b[k]<b[j])
						dp[i][j]=dp[i-1][k];
				dp[i][j]++;
			}
			mx=max(mx,dp[i][j]);
		}

不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。


但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(F[i-1][k])的值我们可以在之前访问F[i][k]的时候,通过维护更新一个max变量得到。

怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了F[1][len(b)]再去算F[2][1]。

如果按照这个递推顺序,我们可以在每次外层循环的开始加上一个为0的max变量,然后开始内层循环。

当a[i]>b[j]的时候令max=F[i-1][j]。如果循环到了a[i]==b[j]的时候,则令F[i][j]=max+1。

最后答案是F[len(a)][1]..F[len(a)][len(b)]的最大值。

for(int i=1;i<=m;i++){ 
		int mx=0;//dp[i-1][1..n]中b[j]<a[i]的max,即a[i]可以接在后面的max 
		for(int j=1;j<=n;j++){
			dp[i][j]=dp[i-1][j];
			if(b[j]<a[i])mx=max(mx,dp[i-1][j]); 
			else if(b[j]==a[i])dp[i][j]=mx+1;
		}
	}
	int mx=0;
	for(int j=1;j<=n;j++)mx=max(mx,dp[m][j]);


算法的时间复杂度O(n^2)已经不能再优化,但是空间复杂度可以继续优化成一维。

可以看到,上式中,由于"dp[i][j]=dp[i-1][j]"的操作,条件语句中的dp值都是一样的,这个操作也只是将上一次的结果向下转移罢了。

下面是本题O(n^2)+一维的完整做法:

#include<cstdio>
#define M 5005
int a[M],b[M];
int dp[M];//dp[i][j],a{1~i},b{1~j}且以b[j]结尾的LCIS最大长度 
int max(int a,int b){return a>b?a:b;}
int main(){
	int m,n;
	scanf("%d",&m);for(int i=1;i<=m;i++)scanf("%d",&a[i]);
	scanf("%d",&n);for(int j=1;j<=n;j++)scanf("%d",&b[j]);
	for(int i=1;i<=m;i++){ 
		int mx=0;//dp[i-1][1..n]中b[j]<a[i]的max,即a[i]可以接在后面的max 
		for(int j=1;j<=n;j++)
			if(b[j]<a[i])mx=max(mx,dp[j]); 
			else if(b[j]==a[i])dp[j]=mx+1;
	}
	int mx=0;
	for(int j=1;j<=n;j++)mx=max(mx,dp[j]);
	printf("%d\n",mx);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值