【题解】【算法】- 洛谷 - P2678 跳石头(二分)

这是一篇关于算法题解的博客,详细介绍了如何解决“跳石头”比赛的问题。比赛要求在移除最多M块岩石的情况下,使选手从起点到终点的最短跳跃距离最大化。博客内容包括问题描述、输入输出格式、样例及解题思路,提出使用二分搜索的方法来求解,重点在于二分的对象是石头间的距离,并解释了如何设置判断条件。
摘要由CSDN通过智能技术生成

题目背景

一年一度的“跳石头”比赛又要开始了!

题目描述

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能移走起点和终点的岩石)。

输入格式

第一行包含三个整数 L, N, M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 且 N ≥ M ≥ 0。

接下来 N 行,每行一个整数,第 i 行的整数 Di( 0 < Di < L), 表示第 i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出格式

一个整数,即最短跳跃距离的最大值。

输入输出样例

输入 #1复制

25 5 2 
2
11
14
17 
21

输出 #1复制

4

说明/提示

输入输出样例 1 说明:将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4(从与起点距离 17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。

另:对于 20% 的数据,0 ≤ M ≤ N ≤ 10。

对于 50% 的数据,0 ≤ M ≤ N ≤100。

对于 100%的数据,0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000。

思路

这个数据范围,显然暴力是不行的。对于这种问题可以尝试用二分来简化问题,这道题里二分的对象是石头之间的距离,关键在于判定条件,假设答案的距离是x,那么就有M段距离是小于x的,这样问题就简化了许多。另外隐含的有起点和终点也是需要输入到数组里的,根据该题的数据范围,应该用long long表示数据。

AC代码

#include <bits/stdc++.h>
using namespace std;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值