支配集,覆盖集,独立集,匹配
文章目录
概念
支配集
支配集:该图的除了支配集之外的点都与支配集相连,集合中的点将整个图支配了
极小支配集: V ∗ V^* V∗是支配集,其真子集不是
最小支配集:|V*|点数最小的支配集
支配数: γ 0 ( G ) = ∣ V ∗ ∣ \gamma_0(G)=|V^*| γ0(G)=∣V∗∣最小支配集的点数
定理13.1:无向图G无孤立点,V1是极小支配集,则存在V2也是极小支配集,且V1∩V2= ∅ \varnothing ∅
独立集
独立集:集合中的点相互之间没有连线
极大独立集: V ∗ V^* V∗是独立集,其真母集不是
最大独立集:| V ∗ V^* V∗|最大的独立集
独立数: β 0 ( G ) = ∣ V ∗ ∣ \beta_0(G)=|V^*| β0(G)=∣V∗∣最大独立集的点数
定理13.2:无向图G无孤立点, V ∗ V^* V∗是极大独立集,则 V ∗ V^* V∗也是极小支配集(逆命题不成立)
点覆盖
点覆盖:点集合与图中所有的边关联
极小点覆盖: V ∗ V^* V∗是点覆盖,其真子集不是
最小点覆盖: ∣ V ∗ ∣ |V^*| ∣V∗∣的顶点数最小
点覆盖数: α 0 ( G ) = ∣ V ∗ ∣ \alpha_0(G)=|V^*| α0(G)=∣V∗∣最小点覆盖的顶点数
点覆盖是支配集
支配集不一定是点覆盖
极小点覆盖不一定是极小支配集
定理13.3: V ∗ 是 点 覆 盖 ⇔ V − V ∗ 是 独 立 集 V^*是点覆盖\Harr V-V^*是独立集 V∗是点覆盖⇔V−

最低0.47元/天 解锁文章
3213

被折叠的 条评论
为什么被折叠?



