离散数学复习笔记——支配集,覆盖集,独立集,匹配

支配集,覆盖集,独立集,匹配

概念

支配集

支配集:该图的除了支配集之外的点都与支配集相连,集合中的点将整个图支配了

极小支配集 V ∗ V^* V是支配集,其真子集不是

最小支配集:|V*|点数最小的支配集

支配数 γ 0 ( G ) = ∣ V ∗ ∣ \gamma_0(G)=|V^*| γ0(G)=V最小支配集的点数

定理13.1:无向图G无孤立点,V1是极小支配集,则存在V2也是极小支配集,且V1∩V2= ∅ \varnothing

独立集

独立集:集合中的点相互之间没有连线

极大独立集 V ∗ V^* V是独立集,其真母集不是

最大独立集:| V ∗ V^* V|最大的独立集

独立数 β 0 ( G ) = ∣ V ∗ ∣ \beta_0(G)=|V^*| β0(G)=V最大独立集的点数

定理13.2:无向图G无孤立点, V ∗ V^* V是极大独立集,则 V ∗ V^* V也是极小支配集(逆命题不成立)

点覆盖

点覆盖:点集合与图中所有的边关联

极小点覆盖 V ∗ V^* V是点覆盖,其真子集不是

最小点覆盖: ∣ V ∗ ∣ |V^*| V的顶点数最小

点覆盖数 α 0 ( G ) = ∣ V ∗ ∣ \alpha_0(G)=|V^*| α0(G)=V最小点覆盖的顶点数

点覆盖是支配集

支配集不一定是点覆盖

极小点覆盖不一定是极小支配集

定理13.3 V ∗ 是 点 覆 盖 ⇔ V − V ∗ 是 独 立 集 V^*是点覆盖\Harr V-V^*是独立集 VV

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值