通信网第二章(五)——支配集、独立集、覆盖集

目录:

支配集

独立集

覆盖集

求极小点覆盖与极大点独立集     求所有极小支配集

区别与联系



支配集

 定义 5.1.1

设 D ⊆ V (G) ,若对 ∀u ∈V (G) ,要么 u ∈ D ,要么 u 与 D 中的某些顶点相邻,则称 D 为图 G 的一个支配集。

如果一个支配集的任何真子集都不是支配集,则称它为极小支配集。

图 G 的含顶点最少的支配集称为最小支配集。

最小支配集的顶点个数称为 G 的支配数,记为 γ ( G) 或 γ 。

 

特点:

1)最小支配集必是一个极小支配集,反之不然。

2)任一支配集必含有一个极小支配集。

 3)极小支配集不唯一,最小支配集一般也不唯一

4)对二部图 G = ( X ,Y ) ,X 和 Y 都是支配集

 5)若图 G 有完美匹配 M*,则从 M*中每边取一个端点构成的顶点集是一个支配集。

6)在图G中,如果顶点u与v相邻或u=v,则称u支配v

 

例如

在下图中, D0 = {v0 } , D1 = {v1 , v4 , v7 } , D2 = {v1 , v3 , v5 , v6 }都是 G 的支配集,前两个是极小支配集, D0 是最小支配集。 γ (G) = 1 。

匹配集

设 G 是一个图,  M ⊆ E(G) ,满足:对 ∀ ei , e j ∈ M , ei 与 e j 在 G 中不相邻,则称 M 是 G 的一个匹配(matching)。

对匹配 M 中每条边 e = uv ,其两端点 u 和 v 称为被匹配 M 所匹配, 而 u和 v 都称为是 M 饱和的(saturated vertex)

注:每个顶点要么未被 M 饱和, 要么仅被 M 中一条边饱和。

如果 G 中每个点都是 M 饱和的, 则称 M 是 G 的完美匹配(Perfect matching).

 

特点:

1)最小支配集必是一个极小支配集,反之不然。

2)任一支配集必含有一个极小支配集。

 3)极小支配集不唯一,最小支配集一般也不唯一

4)对二部图 G = ( X ,Y ) ,X 和 Y 都是支配集

 5)若图 G 有完美匹配 M*,则从 M*中每边取一个端点构成的顶点集是一个支配集。

6)在图G中,如果顶点u与v相邻或u=v,则称u支配v

 

例如:

在下图G1中,边集{e1}、{e1,e2}、{e1,e2,e3}都构成匹配

{e1,e2,e3}是G1的一个最大匹 配。

最大匹配不一定是完美匹配,因为可能根本就没有完美匹配。

在 G2中,边集{e1,e2,e3,e4}是一个完美匹配,也是一个最大匹配。

 

 

连通支配集:

连通支配集:给定一个图G=(V,E),如果图G的节点集S ⊆ V为满足如下条件的节点集合:由S导出的子图是连通图,且S是图G的一个支配集,则称S为连通支配集。

若S为满足上述条件的最小节点集合,则称S为最小连通支配集。

连通图:

图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称i和j是连通的。如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。 [1] 

 



 

点独立集:

定义 5.1.2 设 I ⊆ V(G):

若 I 中任二顶点均不相邻,则称 I 为图 G 的一个点独立集(简称独立集)

若对 ∀u ∈V (G) - I , I ∪ {u}都不再是 G 的独立集,则称独立集 I 为图 G 的一个极大点独立集。

G 的含点数最多的点独立集称为最大点独立集,它含点的个数称为 G 的独立数,记为α(G) 或α 。

 

独立集与支配集的关系

定理 5.1.8 图G的极大独立集必是 G 的极小支配集。

I1 = {v1 , v4 , v7 }

若对 ∀u ∈V (G) - I , I ∪ {u}都不再是 G 的独立集,则称独立集 I 为图 G 的一个极大点独立集 

极小支配集:一个支配集的任何真子集都不是支配集,则称它为极小支配集。

判断极大点独立集:放大来看  判断极小支配集:缩小来看

 

定理 5.1.10 对任何图 G,α(G) ≥ γ (G)

最小支配集的顶点个数称为 G 的支配数,记为 γ ( G) 或 γ 。

G 的含点数最多的点独立集称为最大点独立集,它含点的个数称为 G 的独立数,记为α(G) 或α 。



点覆盖 (vertex covering set)

定义 5.1.3

设 F ⊂ V (G) ,若 G 的每条边至少有一个端点属于 F,则称 F 是 G 的一个点覆盖。

若对任给的 v ∈ F , F − {v} 不再是 G 的点覆盖,则称点覆盖 F 是一个极小点覆盖。

图 G 的含点数最少的点覆盖称为最小点覆盖,其点数称为 G 的点覆盖数,记为 β (G) 或 β 。

 

 

点覆盖集与支配集的区别:

点覆盖集与支配集易混淆的,本质区别在于,点覆盖集是用点覆 盖边,而支配集使用点支配点。在连通图中,点覆盖集必为支配集。但支配集未必是覆盖集。 比如上例中{v0 }及{v1 , v4 , v7 }都是 G 的支配集,但不是覆盖集。 

 

最小点覆盖必为极小点覆盖

极小点覆盖集未必是极小支配集(反之也成立)

例如下图中{v0 , v1 , v3 , v5 , v7 }是 G 的极小点覆盖集,但它不是 G 的极小支配集。

 

 

点覆盖与点独立集的关系:

定理 5.1.13  顶点子集 F 是图 G 的点覆盖集当且仅当V (G) \ F 是 G 的点独立集。

G 的点覆盖集:{v0 , v1 , v3 , v5 , v7 }

G 的点独立集:{v2 , v4 , v6 , v8}

 

 

推论 5.1.4 独立数与点覆盖数 相加之和为G的顶点个数,即:α(G) + β (G) = ν .

 

 

边独立集

 

定义 5.2.1.图 G 的一个匹配 M 称为 G 的一个边独立集。G 的最大匹配所含的边数称为 G 的 边独立数或匹配数,记为α′(G) 。

 

 

边覆盖

 

定义 5.2.2 设 L ⊆ E(G) 。

若 G 的每个顶点都与 L 中至少一条边关联,则称 L 是 G 的边覆盖。

若边覆盖 L 的任何真子集都不是 G 的边覆盖,则称 L 是 G 的极小边覆盖。

G 的含边数最少的 边覆盖称为 G 的最小边覆盖,其所含边的数目称为 G 的边覆盖数,记为 β ′(G) 或 β ′ 。

 

 

边覆盖与边独立数(匹配数)的关系

定理 5.2.4 若δ (G) > 0,α′(G) + β′(G)=v



应用:

  1. 应急增援中心的选址

支配集定义:设 D ⊆ V (G) ,若对 ∀u ∈V (G) ,要么 u ∈ D ,要么 u 与 D 中的某些顶点相邻,则称 D 为图 G 的一个支配集。

 

  1. 收款台的设置

设 F ⊂ V (G) ,若 G 的每条边至少有一个端点属于 F,则称 F 是 G 的一个点覆盖。

 

3通信信号差错控制问题

 

图论模型:构作图 G:以 s1 , s2 , , s5 为顶点,若信号 si 容易错收为 s j ,则从顶点 si 向 s j 连一 条有向边。问题是求有向图 G 中的最大点独立集。

 

 

计算符号:

 

 

 

求极小点覆盖与极大点独立集

为什么他这里每个极小点覆盖(一个点所覆盖的点是相乘)

 

求所有极小支配集

 

 

 



区别与联系

 

支配集与独立集:

1:定理 5.1.8 图G的极大独立集必是 G 的极小支配集。

2:定理 5.1.10 对任何图 G,α(G) ≥ γ (G)

最小支配集的顶点个数称为 G 的支配数,记为 γ ( G) 或 γ 。

G 的含点数最多的点独立集称为最大点独立集,它含点的个数称为 G 的独立数,记为α(G) 或α 。

 

支配集与点覆盖集的区别:

1:点覆盖集与支配集易混淆的,本质区别在于,点覆盖集是用点覆 盖边,而支配集使用点支配点。在连通图中,点覆盖集必为支配集。但支配集未必是覆盖集。 比如上例中{v0 }及{v1 , v4 , v7 }都是 G 的支配集,但不是覆盖集。 

2:极小点覆盖集未必是极小支配集(反之也成立)

例如下图中{v0 , v1 , v3 , v5 , v7 }是 G 的极小点覆盖集,但它不是 G 的极小支配集。

 

点独立集与点覆盖的关系:

定理 5.1.13  顶点子集 F 是图 G 的点覆盖集当且仅当V (G) \ F 是 G 的点独立集。

G 的点覆盖集:{v0 , v1 , v3 , v5 , v7 }

G 的点独立集:{v2 , v4 , v6 , v8}

推论 5.1.4 独立数与点覆盖数 相加之和为G的顶点个数,即:α(G) + β (G) = ν .

 

边独立数(匹配数)与边覆盖的关系

定理 5.2.4 若δ (G) > 0,α′(G) + β′(G)=v

 

 

理解:

1求支配集,每个乘积项里面是点与邻近点相并,我认为毕竟支配集是研究点与点之间关系的

  求点覆盖,每个乘积项里面是点与邻近点相交后的并,我认为点覆盖毕竟是研究点覆盖边的关系的

2极小点覆盖与极大独立集互补

3计算时候一般先用分配律,再用吸收律

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值