欢迎关注作者个人博客www.peakhuang.com
并查集是一种用于解决动态连通性问题的数据模型
动态连通性
何为动态连通性(dynamic connectivity)
举个例子: 对于某个点,我们可以很轻易的判断它与周围的点是否有连通性,但当某个点与该点相距较远时,我们就很难判断是否存在着这样一条通路将这两个点连接起来

而利用并查集这种抽象的数据模型可以帮助我们快速解决类似的问题
并查集基本模型
我们可以利用数组去实现一个简单的并查集
在这个数组中,假设有n个点,将这n个点从0到n-1依次编号,数组的下标是它们的编号,而储存的内容是它们所连接的点,很容易的想到,当两个点对应的项的值相同时,这两个点在同一个集合中。
那么接下来如何实现连接和查找操作呢?
当两个点相连时,我们不妨让第一个点对应的项变为第二个点对应的项,同时遍历数组,让id值指向第一个点的值变为第二个点的值
public class UnionFind
{
private int[] id;
public UnionFind(int n)
{
id=new int[n];
for(int i=0;i<n;i++)
{
id[i]=i;
}
}
public void union(int x,int y)
{
int xid=id[x];
int yid=id[y];
for(int i=0;i<id.length;i++)
if(id[i]==xid)id[i]=yid;
}
public boolean connected(int x,int y)
{
return id[x]==id[y];
}
}
对于这个算法而言,当n的数量级很大时,合并操作的开销是很大的
合并操作的优化
那么如何优化我们的合并操作呢,我们可以利用树状结构来连接
因为树是一个连通无回路的图,对于树中的点,都有一条与根节点相连的路径,所以我们将两个点的连接视为其中一点与另外一个点的根节点,更进一步,我们不妨直接让这两个点对应的树的根节点直接相连,达到合并的目的
代码修改如下:
public class UnionFind{
private int[] id;
public UnionFind(int n)
{
id=new int[n];
for(int i=0;i<n;i++)
{
id[i]=i;
}
}
public int root(int x)
{
while(x!=id[x])
{
x=id[x];
}
return x;
}
public void union(int x,int y)
{
int i=root(x);
int j=root(y);
id[i]=j;
}
public boolean connected(int x,int y)
{
return root(x)==root(y);
}
}
但这样的代码对于大数量级仍有缺陷,合并操作可能制造出一个很高的树,从而使得寻根操作变得很