机器学习(王衡军)练习题及答案

本文提供了机器学习中的朴素贝叶斯分类模型与神经网络的学习实践题目及解答,涉及二分类任务中特征概率统计,前向算法与维特比算法的应用,以及多层全连接层和卷积神经网络的参数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.在某二分类任务中,样本实例共有5个特征,它们的可能取值数分别为:2、3、4、5、6。当采用朴素贝叶斯分类模型时,请问在计算条件概率时需要在多少个可能值上进行统计?在没有特征条件独立这一假定时,需要在多少个可能值上进行统计?

解:

 

4.在6.5.2节的示例中,用前向算法计算观测序列10、11、7的概率。

解:

 

5.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值