LeetCode39.40 组合总和和组合总和2

组合总和

题目要求

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

破题思路

类似于全排列,但是假如不做剪枝去重的话,会有一些重复的集合出现在答案集合中。

我们考虑在搜索过程中通过剪枝进行去重。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:

第一轮和第二轮分别选择 3 , 4 ,会生成包含这两个元素的所有子集,记为 [3,4,⋯] 。
若第一轮选择 4 ,则第二轮应该跳过 3 ,因为该选择产生的子集 [4,3,⋯] 和 1. 中生成的子集完全重复。
分支越靠右,需要排除的分支也越多,例如:

前两轮选择 3 , 5 ,生成子集 [3,5,⋯] 。
前两轮选择 4 , 5 ,生成子集 [4,5,⋯] 。
若第一轮选择 5 ,则第二轮应该跳过 3 和 4 ,因为子集 [5,3,⋯] 和子集 [5,4,⋯] 和 1. , 2. 中生成的子集完全重复。

为实现该剪枝,我们初始化变量 start ,用于指示遍历起点。当做出选择 xi​ 后,设定下一轮从索引 i 开始遍历

除此之外,我们还对代码进行了两项优化:

  • 在开启搜索前,先将数组 nums 排序。在遍历所有选择时,当子集和超过 target 时直接结束循环,因为后边的元素更大,其子集和都一定会超过 target 。
  • 省去元素和变量 total,通过在 target 上执行减法来统计元素和,当 target 等于 0 时记录解。

题解代码

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<Integer> state = new ArrayList<>(); // 状态(子集)
        Arrays.sort(candidates); // 对 candidates 进行排序
        int start = 0; // 遍历起始点
        List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
        dfs(target, candidates, start, state, res);
        return res;
    }


    //递推工作
    //每一层就是每一轮选择,而每一轮选择中又可以选择choice数组中从start开始的所有元素
    //从start开始就是避免元素重复添加,也就是剪枝
    public void dfs(int target, int[] choices, int start, List<Integer> state, List<List<Integer>> res){
        //target每次都减去choices[i],假如等于0的话,则当前state里面的元素是符合的。
        if(target == 0){
            res.add(new ArrayList<>(state));
            return;
        }
        //剪枝:从start开始,避免生成重复子集
        for(int i = start; i < choices.length ;i++){
            //假如当前元素加进去之后大于target,后面的元素必定大于target,则结束该轮选择
            if(target - choices[i] < 0){
                break;
            }
            //把当前元素加进状态子集中
            state.add(choices[i]);
            //减去当前元素,进行下一轮选择
            dfs(target - choices[i], choices, i, state, res);
            //下一轮结束,把当前轮的当次元素(choice【i】)弹出,开始下一次循环
            state.remove(state.size() - 1);
        }
    }
}

 

 组合总和2

题目要求

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
] 

破题思路

相比于上题,本题的输入数组可能包含重复元素,这引入了新的问题。例如,给定数组 4,4,5和目标元素 9 ,则现有代码的输出结果为 [4,5],[4,5] ,出现了重复子集。

造成这种重复的原因是相等元素在某轮中被多次选择。如下图所示,第一轮共有三个选择,其中两个都为 4 ,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 4 也会产生重复子集。

相等元素剪枝:
为解决此问题,我们需要限制相等元素在每一轮中只被选择一次。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。这意味着在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。

与此同时,本题规定中的每个数组元素只能被选择一次。幸运的是,我们也可以利用变量 start 来满足该约束:当做出选择 xi后,设定下一轮从索引 i+1 开始向后遍历。这样即能去除重复子集,也能避免重复选择元素。

题解代码

class Solution {
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        List<Integer> state = new ArrayList<>();
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(candidates);
        int start = 0;
        backtrack(state, target, candidates, start, res);
        //回溯
        return res;
    }

    public void backtrack(List<Integer> state, int target, int[] choice, int start, List<List<Integer>> res){
        //如果在当前轮数中,target==0,说明state中的所有元素符合题目要求,故返回
        //返回上一轮,开始下一次循环
        if(target == 0){
           res.add(new ArrayList<>(state));
           return; 
        }
        //在一轮中,会执行start到choice最后一个元素那么多次的循环
        //每一轮就是固定一个元素,一轮当中的每一次是具体元素的值
        for(int i = start; i < choice.length; i++){
            //假如该轮的该次元素加进去之后大于target,则后面元素取消循环。
            if(target - choice[i] < 0){
                break;
            }
            //假如当前下边大于开始下标,且当前元素的值等于左边元素,则跳过当前元素,进行下一次循环
            if(i > start && choice[i]==choice[i-1]){
                continue;
            }
            //当前元素加入状态子集
            state.add(choice[i]);
            //开始下一轮,由于有去除重复元素的原因,所以在choice数组中,要跳过当前的元素,从下一个元素开始下一轮
            backtrack(state, target - choice[i], choice, i+1, res);
            //回溯结束,去掉该次循环中加入状态子集的元素
            state.remove(state.size() - 1);
        }
    }


}

下图展示了数组 [4,4,5] 和目标元素 9 的回溯过程,共包含四种剪枝操作。请你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值