组合总和
题目要求
给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
示例 1:
输入:candidates =[2,3,6,7],
target =7
输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1 输出: []
破题思路
类似于全排列,但是假如不做剪枝去重的话,会有一些重复的集合出现在答案集合中。
我们考虑在搜索过程中通过剪枝进行去重。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:
第一轮和第二轮分别选择 3 , 4 ,会生成包含这两个元素的所有子集,记为 [3,4,⋯] 。
若第一轮选择 4 ,则第二轮应该跳过 3 ,因为该选择产生的子集 [4,3,⋯] 和 1. 中生成的子集完全重复。
分支越靠右,需要排除的分支也越多,例如:
前两轮选择 3 , 5 ,生成子集 [3,5,⋯] 。
前两轮选择 4 , 5 ,生成子集 [4,5,⋯] 。
若第一轮选择 5 ,则第二轮应该跳过 3 和 4 ,因为子集 [5,3,⋯] 和子集 [5,4,⋯] 和 1. , 2. 中生成的子集完全重复。
为实现该剪枝,我们初始化变量 start
,用于指示遍历起点。当做出选择 xi 后,设定下一轮从索引 i 开始遍历。
除此之外,我们还对代码进行了两项优化:
- 在开启搜索前,先将数组 nums 排序。在遍历所有选择时,当子集和超过 target 时直接结束循环,因为后边的元素更大,其子集和都一定会超过 target 。
- 省去元素和变量 total,通过在 target 上执行减法来统计元素和,当 target 等于 0 时记录解。
题解代码
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<Integer> state = new ArrayList<>(); // 状态(子集)
Arrays.sort(candidates); // 对 candidates 进行排序
int start = 0; // 遍历起始点
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
dfs(target, candidates, start, state, res);
return res;
}
//递推工作
//每一层就是每一轮选择,而每一轮选择中又可以选择choice数组中从start开始的所有元素
//从start开始就是避免元素重复添加,也就是剪枝
public void dfs(int target, int[] choices, int start, List<Integer> state, List<List<Integer>> res){
//target每次都减去choices[i],假如等于0的话,则当前state里面的元素是符合的。
if(target == 0){
res.add(new ArrayList<>(state));
return;
}
//剪枝:从start开始,避免生成重复子集
for(int i = start; i < choices.length ;i++){
//假如当前元素加进去之后大于target,后面的元素必定大于target,则结束该轮选择
if(target - choices[i] < 0){
break;
}
//把当前元素加进状态子集中
state.add(choices[i]);
//减去当前元素,进行下一轮选择
dfs(target - choices[i], choices, i, state, res);
//下一轮结束,把当前轮的当次元素(choice【i】)弹出,开始下一次循环
state.remove(state.size() - 1);
}
}
}
组合总和2
题目要求
给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]
破题思路
相比于上题,本题的输入数组可能包含重复元素,这引入了新的问题。例如,给定数组 4,4,5和目标元素 9 ,则现有代码的输出结果为 [4,5],[4,5] ,出现了重复子集。
造成这种重复的原因是相等元素在某轮中被多次选择。如下图所示,第一轮共有三个选择,其中两个都为 4 ,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 4 也会产生重复子集。
相等元素剪枝:
为解决此问题,我们需要限制相等元素在每一轮中只被选择一次。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。这意味着在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。
与此同时,本题规定中的每个数组元素只能被选择一次。幸运的是,我们也可以利用变量 start 来满足该约束:当做出选择 xi后,设定下一轮从索引 i+1 开始向后遍历。这样即能去除重复子集,也能避免重复选择元素。
题解代码
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<Integer> state = new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
Arrays.sort(candidates);
int start = 0;
backtrack(state, target, candidates, start, res);
//回溯
return res;
}
public void backtrack(List<Integer> state, int target, int[] choice, int start, List<List<Integer>> res){
//如果在当前轮数中,target==0,说明state中的所有元素符合题目要求,故返回
//返回上一轮,开始下一次循环
if(target == 0){
res.add(new ArrayList<>(state));
return;
}
//在一轮中,会执行start到choice最后一个元素那么多次的循环
//每一轮就是固定一个元素,一轮当中的每一次是具体元素的值
for(int i = start; i < choice.length; i++){
//假如该轮的该次元素加进去之后大于target,则后面元素取消循环。
if(target - choice[i] < 0){
break;
}
//假如当前下边大于开始下标,且当前元素的值等于左边元素,则跳过当前元素,进行下一次循环
if(i > start && choice[i]==choice[i-1]){
continue;
}
//当前元素加入状态子集
state.add(choice[i]);
//开始下一轮,由于有去除重复元素的原因,所以在choice数组中,要跳过当前的元素,从下一个元素开始下一轮
backtrack(state, target - choice[i], choice, i+1, res);
//回溯结束,去掉该次循环中加入状态子集的元素
state.remove(state.size() - 1);
}
}
}
下图展示了数组 [4,4,5] 和目标元素 9 的回溯过程,共包含四种剪枝操作。请你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。