Trajectory Clustering via Deep Representation Learning

一、摘要

传统的轨迹聚类方法通常使用的相似性度量方式不考虑轨迹数据在不同空间区域和时间段的变化,因此这些方法难以有效地将具有相似运动模式的轨迹聚集在一起。在实际情况下,一些轨迹数据可能在不同的地理区域和时间段内表现出相似的运动模式,但传统方法无法捕捉这种特性,因为它们的相似性度量方法不具备空间和时间不变性,无法适应这种情况。

该论文提出的方法旨在通过学习轨迹数据的低维表示,使得这些表示具有空间和时间不变性,从而能够更好地检测轨迹数据中的运动模式,无论这些模式出现在不同的空间区域和时间段。这种方法的目标是提高轨迹聚类的效果,使其更适用于现实世界中的轨迹数据分析。

二、贡献

  1. 能够将不同区域中以不同长度、采样频率得到的轨迹分组

  2. 由于数据质量、采样频率不同,并且连续记录之间存在噪音,直接使用RNN存在问题。使用滑动窗口提取运动特征,并使用auto-encoder学习轨迹固定长度的特征

三、网络框架

在这里插入图片描述

  • Trajectory Preprocessing Layer:该层的输入是移动物体的GPS记录序列。序列是有噪声的,并且一些记录对之间的时间间隔可能非常大。在这一层中,我们去除了低质量的GPS记录,并将序列切割成具有时间连续性的轨迹。
  • Moving Behavior Feature Extraction Layer:使用运动行为特征提取算法对所有轨迹进行处理。基于滑动窗口,将轨迹转换为特征序列
  • Seq2Seq Auto-Encoder Layer:使用auto-encoder将每个特征序列embedding到固定长度的向量中。该向量对轨迹的运动模式进行编码
  • Cluster Analysis Layer:使用聚类算法,将表征向量转换为聚类。

四、方法细节

1.特征提取层
  • 窗口长度 L p L_p Lp,偏移量 o f f s e t p = 1 2 L p offset_p= \frac{1}{2}L_p offsetp=21Lp.
  • 对于每个窗口 W W W,有 R R R条记录,如果 R ≥ 1 R\ge1 R1,窗口内的记录两两之间计算 Δ t , Δ l , Δ s , Δ r \Delta t,\Delta l,\Delta s,\Delta r Δt,Δl,Δs,Δr
  • 进一步可以计算feature, f i = ( f Δ l i , f Δ s i , f Δ r i ) f_i=(f_{\Delta l_i},f_{\Delta s_i},f_{\Delta r_i}) fi=(fΔli,fΔsi,fΔri),其中 f Δ l i = Δ l i / Δ t i f_{\Delta l_i}=\Delta l_i/\Delta t_i fΔli=Δliti表示平均速度, f Δ s i = Δ s i f_{\Delta s_i}=\Delta s_i fΔsi=Δsi表示速度变化量, f Δ r i = Δ r i f_{\Delta r_i}=\Delta r_i fΔri=Δri表示ROT变化量。
  • 由此每个窗口可以得到一组特征 f = { f 1 , f 2 , … , f R } f=\{f_1,f_2,\dots,f_R\} f={f1,f2,,fR} f i f_i fi中三个维度每个维度取平均值、最大值、75%分位点,50%分位点,25%分位点,最小值这六个统计量,最终每个窗口可以得到 3 x 6 = 18 3x6=18 3x6=18维的特征。
  • 将每个窗口的特征组成集合 B T R B_{TR} BTR,每个 B T R B_{TR} BTR组成 B S BS BS并进行标准化,准备传输给auto-encoder层
2.Auto-Encoder层
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值