1.背景
- 早期的TRL将轨迹视为普通序列数据,不能完全捕捉轨迹的时空语义信息
- 现有的两阶段方法
- 只对静态道路图进行建模,没有结合旅行语义,如路段间的转移概率
- 将轨迹视为位置序列,没有考虑时间信息
- 预训练任务重没有考虑轨迹的时空特征
- 序列重建
- MLM
2.方法
- 采用两阶段学习方法
- 轨迹模式增强图注意力网络
- 以道路特征作为输入
- 使用路段转移概率矩阵来建模道路访问频率
- 这样道路特征的旅行语义和访问频率都会被融入到道路表征中
- 将道路表征序列转换为轨迹表征
- 结合时间规则性信息
- 轨迹模式增强图注意力网络
3.模型
3.1 轨迹模式增强的图注意层 TPE-GAT
-
功能:将路网转换为融合轨迹旅行语义的表征向量
-
轨迹受到道路网络连通性的约束,因此需要从道路特征和网络结构来学习道路表征向量。
-
标准的GAT无法捕捉轨迹中的旅行模式
- 引入路段之间的概率转移矩阵来模拟路段访问频率,扩展了GAT的注意力权重计算
-
输入
- 路段特征
F
V
\mathbf{F}_{\mathcal{V}}
FV
- 道路类型、道路长度、车道数、限速、入度、出度
- 做cat操作作为路段的初始表征向量
- 路段特征
F
V
\mathbf{F}_{\mathcal{V}}
FV
-
第 l l l层路段 v i v_i vi和 v j v_j vj的注意力权重 α i j \alpha_{ij} αij计算
-
h i h_i hi和 h j h_j hj分别表示路段 v i , v j v_i,v_j vi,vj的表征向量
-
p i j t r a n s p_{ij}^{trans} pijtrans是 v i v_i vi到 v j v_j vj的转移概率
-
输出:路段特征向量 r i \mathbf{r}_i ri
- H 1 H_1 H1是注意力神经元数量,即"头"
- ∣ ∣ || ∣∣是cat操作
3.2 时间感知轨迹编码层
- 功能:结合时间规律信息,将路段表征序列转变为轨迹表征
3.2.1 轨迹时间模式抽取模块
-
将路段 v i v_i vi的每个时间戳 t i t_i ti嵌入为 t m i ( t i ) \mathbf{t}_{mi(t_i)} tmi(ti)和 t d i ( t i ) \mathbf{t}_{di(t_i)} tdi(ti)
- 其中 m i ( t i ) mi(t_i) mi(ti)和 d i ( t i ) di(t_i) di(ti)分别是将 t i t_i ti转换为分钟序号(1-1440)和天序号(1-7)的函数
-
得到 v i v_i vi的最终embedding
-
r i \mathbf{r}_i ri:路段特征向量
-
p e i \mathbf{pe}_i pei: v i v_i vi在轨迹的位置编码
-
输出:轨迹的初始表征向量——通过concat所有经过路段的 x i \mathbf{x}_i xi
3.2.2 时间间隔感知的自注意模块
- 路段之间的不规则时间间隔,可以反映道路的拥堵程度
-
Δ ~ \tilde \Delta Δ~是一个自适应的时间间隔矩阵,衡量轨迹路段间的影响
-
当 v i v_i vi和 v j v_j vj之间的时间间隔较短时, δ i j ∈ Δ ~ \delta_{ij} \in \tilde \Delta δij∈Δ~有较大值,即这两条路在自注意中具有较强的影响
-
δ i j \delta_{ij} δij的计算方法
-
δ i , j = ∣ t i − t j ∣ \delta_{i,j}=|t_i-t_j| δi,j=∣ti−tj∣
-
为了让影响随着时间间隔的增加而变小,引入衰减函数
- δ i , j ′ = 1 / l o g ( e + δ i , j ) \delta_{i,j}'=1/log(e+\delta_{i,j}) δi,j′=1/log(e+δi,j)
-
加入可学习参数
-
4.预训练任务
-
连续掩码预测
-
同上一篇
-
用 [ M A S K ] [MASK] [MASK]替换 v i v_i vi, [ M A S K T ] [MASKT] [MASKT]替换时间索引
-
获得轨迹的预测向量后,经过一个全连接层预测遮盖的道路
-
使用交叉熵作为loss
-
-
轨迹对比学习
- 掩码预测侧重于捕捉道路上下文信息,还需要训练时空特征和旅行语义
- 数据增强策略
- 轨迹剪裁——在起点和终点进行裁剪(不破坏轨迹连续性和行进语义)——真的可以不破坏吗?
- 时间扰动
- mask
- Dropout——在嵌入层随机去掉一些特征(还是作为正样本)
5.下游任务
- 出行时间预测——全连接
- 轨迹分类——全连接+softmax
- 轨迹相似度计算和搜索