class MyModel(keras.Model):
def __init__(self):
super(MyModel,self).__init__()
self.fc1=MyDense(28*28,256)
self.fc2=MyDense(256,128)
self.fc3=MyDense(128,64)
self.fc4=MyDense(64,32)
self.fc5=MyDense(32,10)
def call(self,inputs,training=None):
x=self.fc1(inputs)
x=self.fc2(x)
x=self.fc3(x)
x=self.fc4(x)
x=self.fc5(x)
return x
更改后:
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel,self).__init__()
self.fc1=MyDense(28*28,256)
self.fc2=MyDense(256,128)
self.fc3=MyDense(128,64)
self.fc4=MyDense(64,32)
self.fc5=MyDense(32,10)
def call(self,inputs,training=None):
x=self.fc1(inputs)
x=self.fc2(x)
x=self.fc3(x)
x=self.fc4(x)
x=self.fc5(x)
return x
更改后没有问题了,当然这个也只是在我的电脑tensorflow上是这样的,可能每个人的电脑上的tensorflow可能出现的问题不一样,我这个只是一个范例,仅供参考,希望有所帮助!