评估图像相似性的不同方法(包含代码实现)

视频讲解

论文讲解合集icon-default.png?t=O83Ahttps://blog.csdn.net/keep_trying_go/category_12801447.html?spm=1001.2014.3001.5482

图像相似性评估方法代码实现:https://github.com/KeepTryingTo/DeepLearning/tree/main/Text2Image/ImageSimilarityIndexicon-default.png?t=O83Ahttps://github.com/KeepTryingTo/DeepLearning/tree/main/Text2Image/ImageSimilarityIndex

        文本主要是针对图像相似性的不同评估方法初步讲解,首先大家要知道并没有一种方法是完美的,因此大家在使用不同方法对图像相似性进行评估的时候可能得到结果差别比较大,但是这并不就否认某一种方法不行,而是不同方法可能适用的场景不一样,大家在选择方法的时候根据自己的领域常用方法来使用。

相关指标论文下载

方法    

论文下载地址
LPIPS https://arxiv.org/pdf/1801.03924v2
Inception-Score 

https://arxiv.org/pdf/1801.01973v2.pdf

https://arxiv.org/pdf/1606.03498v1.pdf

FID https://arxiv.org/pdf/1706.08500v6.pdf

目录

方法一:MSE(Mean Square Error)

方法二:SSIM(Structural Similarity Index)

方法三:PSNR(Peak Signal-to-Noise Ratio)

方法四:余弦相似性(Cosine Similarity)

方法五:汉明距离(Hamming Distance)

方法六:Inception-Score

方法七:FID(Fréchet Inception Distance)

方法八:LPIPS(Learned Perceptual Image Patch Similarity)


方法一:MSE(Mean Square Error)

方法二:SSIMStructural Similarity Index

注:其实像SSIM结构相似性评估指标,有时候也会使用该指标作为损失函数(loss function)去优化模型,特别是针对那些模型的输出是一张图像或者特征图时,在人群计数领域也会使用到指标作为优化模型。 

https://blog.csdn.net/qq_50001789/article/details/131402106(参考文章)

方法三:PSNRPeak Signal-to-Noise Ratio

方法四:余弦相似性Cosine Similarity

方法五:汉明距离(Hamming Distance

方法六:Inception-Score

参考源码

方法七:FIDFréchet Inception Distance

指标参考论文下载地址:https://arxiv.org/pdf/1706.08500v6.pdf

方法八:LPIPSLearned Perceptual Image Patch Similarity

官方源码下载地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值