论文讲解合集https://blog.csdn.net/keep_trying_go/category_12801447.html?spm=1001.2014.3001.5482
文本主要是针对图像相似性的不同评估方法初步讲解,首先大家要知道并没有一种方法是完美的,因此大家在使用不同方法对图像相似性进行评估的时候可能得到结果差别比较大,但是这并不就否认某一种方法不行,而是不同方法可能适用的场景不一样,大家在选择方法的时候根据自己的领域常用方法来使用。
方法 | 论文下载地址 |
---|---|
LPIPS | https://arxiv.org/pdf/1801.03924v2 |
Inception-Score | |
FID | https://arxiv.org/pdf/1706.08500v6.pdf |
目录
方法二:SSIM(Structural Similarity Index)
方法三:PSNR(Peak Signal-to-Noise Ratio)
方法七:FID(Fréchet Inception Distance)
方法八:LPIPS(Learned Perceptual Image Patch Similarity)
方法一:MSE(Mean Square Error)
方法二:SSIM(Structural Similarity Index)
注:其实像SSIM结构相似性评估指标,有时候也会使用该指标作为损失函数(loss function)去优化模型,特别是针对那些模型的输出是一张图像或者特征图时,在人群计数领域也会使用到指标作为优化模型。
https://blog.csdn.net/qq_50001789/article/details/131402106(参考文章)
方法三:PSNR(Peak Signal-to-Noise Ratio)
方法四:余弦相似性(Cosine Similarity)
方法五:汉明距离(Hamming Distance)
方法六:Inception-Score
方法七:FID(Fréchet Inception Distance)
指标参考论文下载地址:https://arxiv.org/pdf/1706.08500v6.pdf