【通信仿真】数字基带通信仿真【含GUI Matlab源码 2510期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
Matlab信号处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、数字基带信号波形仿真简介

主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了MATLAB仿真软件。然后介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过比较最终选择双极性不归零码。之后介绍了数字基带信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。

数字基带传输系统在实际数字通信系统中的应用虽然没有频带传输应用广泛,但仍有相当多的应用范围。而且最为重要的是数字基带传输系统的基本理论不仅适用于数字基带传输系统,而且还适用于频带传输,因为所有窄的带通信号、线性带通系统及等效低通系统都对等效低通信号的响应均可用其等效低通信号、等效低通系统及等效低通系统对等效低通信号的响应来表示,因而频带传输系统可通过它的等效低通(或等效基带)传输系统的理论分析及计算机仿真来研究它的性能,因而掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。

1 基带传输系统简介
如果数字调制器的载波是周期性的脉冲,用数字序列去调制脉冲载波的某参数,则可将数字序列转换成为相应的信号波形,这就被称为数字脉冲调制器。而数字脉冲调制器输出信号波形的功率谱密度是低通型的,所占频带是从直流或低频开始的,其带宽是有限的。那么就称此数字信号为数字基带信号。若通信信道的传递函数是低通型的,则称此信道为基带信道,又称基带信道为低通信道,如同轴电缆和双绞线有线信道均属基带信道。数字基带信号通过基带信道进行传输,则称此传输系统为数字基带传输系统。
在这里插入图片描述
2 基带传输系统结构图

基带传输系统主要由信道信号形成器、信道、接收滤波器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。
信道信号形成器:把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。
信道:允许基带信号通过的媒质。信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。在通信系统的分析中,常常把噪声n(t)等效,集中在信道中引入。
接收滤波器:滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。
抽样判决器:在传输特性不理想及噪声背景下,在规定的时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取,位定时的准确与否将直接影响判决效果。

3 基带传输过程
终端设备编码器所产生的脉冲序列将作为为基带传输系统的输入信号,为了使这种脉冲序列能在信道中进行传输,一般要通过码型变换器将二进制脉冲序列变为双极性码(AMI码或HDB3码),有时为了使信号在基带传输系统内的码间干扰降到最低,还要进行波形变换。由于信道特性不理想或者噪声的干扰,会使经过信道的信号受到干扰而变形。在接收端为了减小噪声的影响,首先会把通过信道的信号引入接收滤波器,然后再经过均衡器,校正由于信道特性(包括接收滤波器在内)不理想而产生的波形失真或码间串扰。最后在取样定时脉冲到来时,进行判决以恢复基带数字码脉冲。

⛄二、部分源代码

function varargout = test2(varargin)
% TEST2 MATLAB code for test2.fig
% TEST2, by itself, creates a new TEST2 or raises the existing
% singleton*.
%
% H = TEST2 returns the handle to a new TEST2 or the handle to
% the existing singleton*.
%
% TEST2(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in TEST2.M with the given input arguments.
%
% TEST2(‘Property’,‘Value’,…) creates a new TEST2 or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before test2_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to test2_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help test2

% Last Modified by GUIDE v2.5 07-Apr-2023 13:57:13

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @test2_OpeningFcn, …
‘gui_OutputFcn’, @test2_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before test2 is made visible.
function test2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to test2 (see VARARGIN)

% Choose default command line output for test2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes test2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = test2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

global bmmode;
global temp;
global k;

% — Executes on button press in checkbox1.
function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,‘Value’) returns toggle state of checkbox1
global bmmode;
global k;
temp = get(handles.checkbox1,‘Value’);
if temp == 1;
bmmode=1;
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值