【图像增强】同态滤波+Retinex+模糊技术图像增强【含Matlab源码 1013期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、 图像增强技术简介

1 图像增强
图像增强是对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以便于显示、观察或进一步分析与处理。通过对图像的特定加工,将被处理的图像转化为对具体应用来说视觉质量和效果更“好”或更“有用”的图像。
图像增强是最基本最常用的图像处理技术,常用于其他图像处理的预处理阶段。
在这里插入图片描述
(1)高通平滑、低通锐化;平滑模糊、锐化突出图像细节
(2)滤波器还有带通、带阻等形式
(3)根据噪声(椒盐噪声、高斯噪声…)的不同,选用不同的滤波
(4)邻域有4-邻域、对角邻域、8-邻域,相对应的有邻接,即空间上相邻、像素灰度相似
(5)图像边缘处理:忽略不处理、补充、循环使用
(6)目前尚未图像处理大多基于灰度图像

2 同态滤波
同态滤波采用的是照射-反射模型, 即通过同时减小图像的灰度范围和增强图像的对比度来对图像增强. 图像可表示为照射i(x,y)和反射r(x,y) 两部分的乘积
在这里插入图片描述
将其变换到对数域, 并进行傅里叶变换得
在这里插入图片描述
式中: I(u,v)和R(u,v)分别是In(i(x,y))和In(r(x,y)) 的傅里叶变换, 借助滤波函数H(u,v)对F(u,v)进行滤波, 可以分离得到入射分量和反射分量
在这里插入图片描述
滤波后, 进行傅里叶逆变换得
在这里插入图片描述
对式(25)取指数后, 得到滤波后的图像
在这里插入图片描述

3 Retinex增强处理
基于全局直方图、局部直方图的图像去雾算法在理论及实现上比较简单,能起到一定的去雾处理效果。为了进行对比, 实验中采取了Retin ex图像增强算法来进行对比, 该算法可以平衡图像灰度动态范围压缩、图像增强和图像颜色恒常三个指标,能够实现对含雾图像的自适应性增强。因此, Retin ex增强处理通过对RGB图像的R、G、B三层通道分别应用Retin ex算法进行处理, 再整合到新的图像的方式来进行。

4 图像的直觉模糊增强算法
模糊范数在模糊集的理论体系中占有重要地位,YAGER通过“最大-最小”算子定义了模糊范数
在这里插入图片描述
HAMACHER通过纯代数运算定义模糊范数
在这里插入图片描述
对于一幅大小为M×N的灰度图像B(彩色图像取其亮度),其灰度值范围为[0,L-1],则图像B的模糊域的隶属函数可定义为
在这里插入图片描述
式中:gmin和gmax分别为图像灰度值的最小值和最大值;gi j为像素(i,j)的灰度值。
直觉模糊集:设X是一个给定论域,则X上的一个直觉模糊集A为
A={<x,μA(x),γA(x)>|x∈X} (6)
式中:μA(x)∈[0,1]为隶属函数,γA(x)∈[0,1]为非隶属函数,且对于A上的所有x∈X,0<μA(x)+γA(x)≤1,πA(x)=1-μA(x)-γA(x)为犹豫度。
在这里插入图片描述
式中:0≤α≤1,α用来调节隶属度μ(gi j)本身包含的模糊性,经实验验证,当0.6<α≤0.8时,图像增强效果较好。
利用式(4)的Hamacher模糊范数,可合成隶属度
在这里插入图片描述
直觉模糊增强图像的步骤为: 1) 通过式(5)计算图像每个像素点的隶属度;2) 通过式(7)和式(8)计算图像每个像素点的隶属度的下限和上限;3) 通过式(9)将图像每个像素点的隶属度的下限和上限合成为像素点的隶属度;4) 通过式(10)计算图像每个像素点的隶属度对应的灰度值。

⛄二、部分源代码

Image=(imread(‘gugong1.jpg’)); %打开图像并转换为double数据
imshow(Image);
[height,width,c]=size(Image);
RI=double(Image(:,:,1)); GI=double(Image(:,:,2)); BI=double(Image(:,:,3));
sigma=100; filtersize=[height,width];%高斯滤波器参数
gaussfilter=fspecial(‘gaussian’,filtersize,sigma); %构造高斯低通滤波器
Rlow=imfilter(RI,gaussfilter,‘replicate’,‘conv’);
Glow=imfilter(GI,gaussfilter,‘replicate’,‘conv’);
Blow=imfilter(BI,gaussfilter,‘replicate’,‘conv’);
minRL=min(min(Rlow)); minGL=min(min(Glow)); minBL=min(min(Blow));
maxRL=max(max(Rlow)); maxGL=max(max(Glow)); maxBL=max(max(Blow));
RLi=(Rlow-minRL)/(maxRL-minRL);
GLi=(Glow-minGL)/(maxGL-minGL);
BLi=(Blow-minBL)/(maxBL-minBL);
Li=cat(3,RLi,GLi,BLi);
figure;imshow(Li);title(‘估计光照分量’);
imwrite(Li,‘light.bmp’);
Image=(imread(‘gugong1.jpg’)); %打开图像并转换为double数据
imshow(Image);title(‘原始图像’);
[height,width,c]=size(Image);
RI=double(Image(:,:,1)); GI=double(Image(:,:,2)); BI=double(Image(:,:,3));
beta=0.4;
alpha=125;
CR=beta*(log(alpha*(RI+1))-log(RI+GI+BI+1));
CG=beta*(log(alpha*(GI+1))-log(RI+GI+BI+1));
CB=beta*(log(alpha*(BI+1))-log(RI+GI+BI+1));
Rhigh=zeros(height,width);
Ghigh=zeros(height,width);
Bhigh=zeros(height,width);

end
Image=imread(‘Beautiful.jpg’);
imshow(Image),title(‘原始图像’);
[height width]=size(Image);
Image=double(Image);
xmax=max(max(Image));
Fe=2;%指数模糊因子
xc=mean2(Image);
Fd=(xmax-xc)/(2^(1/Fe)-1);
u=(1+(xmax-Image)/Fd).^(-Fe); %空间域变换到模糊域
times=2;%设置迭代次数
for k=1:times
for i=1:height %模糊域增强算子
for j=1:width

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]黄明杨.图像去模糊技术及相关图像增强系统[D].北京邮电大学

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值