【用电需求预测】雾凇算法优化最小二乘支持向量机RIME-LSSVM用电需求预测【含Matlab源码 3733期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、雾凇算法优化最小二乘支持向量机RIME-LSSVM用电需求预测简介

LSSVM时序预测是一种用于预测时序数据的方法,它结合了最小二乘支持向量机(LSSVM)和雾凇算法,以实现用电需求的精确预测。本文将介绍如何使用RIME-LSSVM来进行用电需求预测,并探讨雾凇算法对LSSVM的优化作用。

LSSVM是一种基于支持向量机(SVM)的机器学习算法,它在处理时序数据预测时表现出色。然而,LSSVM在处理大规模数据集时可能会面临计算复杂度高的问题,而且对参数的选择也比较敏感。为了克服这些问题,雾凇算法被引入到LSSVM中,以优化其性能和准确性。

RIME-LSSVM是一种基于雾凇算法优化的LSSVM模型,它在用电需求预测中表现出色。通过结合LSSVM和雾凇算法,RIME-LSSVM能够更好地处理时序数据,并且对参数的选择更加稳健。这使得RIME-LSSVM成为了用电需求预测中的一种重要工具。

在实际应用中,RIME-LSSVM可以帮助电力公司和用户更准确地预测未来的用电需求,从而更好地安排用电计划和资源分配。同时,它也可以帮助用户更好地管理自己的用电行为,以节约能源和降低成本。

总的来说,基于雾凇算法优化的最小二乘支持向量机RIME-LSSVM实现用电需求预测是一种非常有效的方法。它结合了LSSVM和雾凇算法的优点,能够更准确地预测时序数据,并且在实际应用中表现出色。希望本文能够帮助读者更好地了解RIME-LSSVM的原理和应用,从而更好地应用于实际工作中。

📣 部分代码

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行

%% 导入数据(时间序列的单列数据)
result = xlsread(‘数据.xlsx’);

%% 数据分析
num_samples = length(result); % 样本个数
kim = 12; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 预测未来多少数据(跨zim个时间点进行预测)
ST = 100; % 递归预测未来多少数据,100是预测100个数据

%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, 😃 = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 转置以适应模型
p_train = p_train’; p_test = p_test’;
t_train = t_train’; t_test = t_test’;

%% 参数设置
pop = 5; % 种群数目
Max_iter = 50; % 迭代次数
dim = 2; % 优化参数个数
lb = [10, 10]; % 下限
ub = [1000, 1000]; % 上限

%% 优化函数
fobj = @(x)fitnessfunclssvm(x, p_train, t_train);

%% 优化
[Best_score, Best_pos, curve] = RIME(pop, Max_iter,lb,ub, dim,fobj);
type = ‘f’;
kernel = ‘RBF_kernel’;
proprecess = ‘preprocess’;
gam = Best_pos(1);
sig = Best_pos(2);
model = initlssvm(p_train, t_train, type, gam, sig, kernel, proprecess);
model = trainlssvm(model);

%% 模型预测
t_sim1 = simlssvm(model, p_train);
t_sim2 = simlssvm(model, p_test);

%% 数据反归一化
T_sim1 = mapminmax(‘reverse’, t_sim1, ps_output);
T_sim2 = mapminmax(‘reverse’, t_sim2, ps_output);

%% 均方根误差
error1 = sqrt(sum((T_sim1’ - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2’ - T_test ).^2) ./ N);

%% 优化曲线
figure
plot(curve, ‘linewidth’, 1.5);
title(‘RIME-LSSVM迭代曲线’)
xlabel(‘迭代次数’)
ylabel(‘最优值’)
grid on;

%% 绘图
figure
plot(1: M, T_train, ‘r-*’, 1: M, T_sim1, ‘b-o’, ‘LineWidth’, 1)
legend(‘真实值’,‘预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string = {‘RIME-LSSVM训练集预测结果对比’; [‘RMSE=’ num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, ‘r-*’, 1: N, T_sim2, ‘b-o’, ‘LineWidth’, 1)
legend(‘真实值’,‘预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string = {‘RIME-LSSVM测试集预测结果对比’;[‘RMSE=’ num2str(error2)]};
title(string)
xlim([1, N])
grid

%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1’)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2’)^2 / norm(T_test - mean(T_test ))^2;

disp([‘训练集数据的R2为:’, num2str(R1)])
disp([‘测试集数据的R2为:’, num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1’ - T_train)) ./ M ;
mae2 = sum(abs(T_sim2’ - T_test )) ./ N ;

disp([‘训练集数据的MAE为:’, num2str(mae1)])
disp([‘测试集数据的MAE为:’, num2str(mae2)])

% MBE
mbe1 = sum(T_sim1’ - T_train) ./ M ;
mbe2 = sum(T_sim2’ - T_test ) ./ N ;

disp([‘训练集数据的MBE为:’, num2str(mbe1)])
disp([‘测试集数据的MBE为:’, num2str(mbe2)])

%% 构造递归预测未来数据
save_new_pred = zeros(1, ST);

% 获取当前最新数据
new_data = t_test(end - kim + 1: end)';

for i = 1: ST

% 预测接下来数据
new_pre = simlssvm(model, new_data);

% 更新最新数据
new_data(1: end - 1) = new_data(2: end);
new_data(end) = new_pre;

% 保存预测结果
save_new_pred(i) = new_pre;

end

%% 数据反归一化
T_sim3 = mapminmax(‘reverse’, save_new_pred, ps_output);

%% 绘制预测结果
figure
plot(1: length(result), result, ‘b-’, ‘LineWidth’, 1)
hold on
plot(length(result): length(result) + ST, [result(end), T_sim3], ‘r-’, ‘LineWidth’, 1)
legend(‘真实值’, ‘未来值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string = {‘RIME-LSSVM未来值预测’};
title(string)
xlim([1, length(result) + ST])
grid

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]于淑香,温一军.基于GWO-BP算法的软件缺陷预测模型[J].安徽电子信息职业技术学院学报. 2018,17(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 26
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值