Python学习笔记——NumPy

NumPy简介

NumPy,是Numerical Python的简称,它是目前Python数值计算中最为重要的基础包,大多数计算包都提供了基于NumPy的科学函数功能。NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。

一.NumPy ndarray:多维数组对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,ndarray是一个快速、灵活的大型数据集容器,以 0 下标为开始进行集合中元素的索引。
1.ndarray包含的每一个元素均为相同类型。
2.每一个数组都有一个shape属性,用来表征数组每一维度的数量。
3.每一个数组都有一个dtype属性,用来描述数组的数据类型。
4.ndarray 中的每个元素在内存中都有相同存储大小的区域。
使用array函数接受对象生成数组:

data1 = [1,1.5,2,8,0,1]

arr1 = np.array(data1)

print(arr1)

运行结果:
在这里插入图片描述
若没有指定,np.array会自动推断生成数组的数据类型,数据类型被存放在dtype中

print(arr1.dtype)

在这里插入图片描述
接收列表:

data2 = [[1,2,3,4],[5,6,7,8]]

arr2 = np.array(data2)

print(arr2)

运行结果:
在这里插入图片描述
data2是一个包含列表的列表,所以arr2自动转换为了二维数组。

除了np.array,还有很多其他函数可以创建新数组。

数组生成函数:

函数名描述
array将输入数据(可以是列表、元组、数组以及其他序列)转换为ndarray,如不显式指明数据类型,将自动判断;默认复制所有的输入数据
asarray将输入转换为ndarray,但如果输入已经是ndarray则不再复制
arangePython内建函数range的数组版,返回一个数组
ones根据给定形状和数据类型生成全1数组
ones_like根据所给的数组生成一个形状一样的全1数组
zeros根据给定形状和数据类型生成生成全0数组
zeros_like根据所给的数组生成一个形状一样的全0数组
empty根据给定形状生成一个没有初始化数值的空数组
empty_like根据所给数组生成一个形状一样但没有初始化数值的空数组
full根据给定的形状和数据类型生成指定数值的数组
full_like根据所给的数组生成一个形状一样但内容是指定数值的数组
eye,identity生成一个N*N特征矩阵(对角线位置都是1,其余位置都是0)

二.ndarray的数据类型

类型类型代码说明
int8、uint8i1、u1有符号和无符号的8位(1个字节)整数
int16、uint16i2、u2有符号和无符号的16位(2个字节)整数
int32、uint32i4、u4有符号和无符号的32位(4个字节)整数
int64、unint64i8、u8有符号和无符号的64位(8个字节)整数
float16  f2半精度浮点数
float32f4或f标准的单精度浮点数
float64f8或d标准的双精度浮点数
float128f16或g扩展精度浮点数
complex64、complex128、complex256c8、c16、c32分别用两个32位、64位或128位浮点数表示的复数
bool  ?存储True和False值的布尔类型
objectOPython对象类型
string_S固定长度的字符串长度(每个字符1个字节)
unicode_U固定长度的unicode长度(每个字符1个字节)
可以使用astype方法显式地转换数组的数据类型:
arr = np.array([1,2,3,4,5])

print(arr.dtype)

float_arr = arr.astype(np.float64)

print(float_arr.dtype)

运行结果:
在这里插入图片描述

  • 如果把浮点数转换成整数,则小数点后的部分将被消除。
  • 如果因为某些原因导致转换类型失败,将会抛出一个ValueError。

三.NumPy数组算术

arr = np.array([[1.,2.,3.],[4.,5.,6.]])

print("arr=")
print(arr)

print("arr*arr=")
print(arr * arr)

print("arr-arr=")
print(arr - arr)

print("1/arr=")
print(1 / arr)

print("arr**0.5=")
print(arr ** 0.5)

运行结果:
在这里插入图片描述
同尺寸数组之间比较会产生一个布尔值数组:

arr = np.array([[1.,2.,3.],[4.,5.,6.]])

arr2 = np.array([[0.,4.,1.],[7.,2.,12.]])

print(arr2>arr)

运行结果:
在这里插入图片描述

四.基础索引与切片

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。
ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop , step 参数进行,从原数组中切割出一个新数组。

arr = np.arange(10)

arr_slice = slice(2,7,2)   # 从索引 2 开始到索引 7 停止,间隔为2

print (arr[arr_slice])

运行结果:
在这里插入图片描述

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作

arr = np.arange(10)

arr_slice = arr[2:7:2]   # 从索引 2 开始到索引 7 停止,间隔为2

print (arr_slice)

运行结果:
在这里插入图片描述

如果你传入一个数值给数组切片,例如arr[3:6] = 10,数值被传递给整个切片:

arr = np.arange(10)

#原来的数组
print(arr)

arr[3:6] = 10

#切片后的数组
print(arr)

运行结果:
在这里插入图片描述
当我们改变了数组的切片时,其变化也会体现在原数组上:

arr[3:6] = 10

arr_slice = arr[3:6]

print(arr_slice)

#改变切片的值
arr_slice[1] = 12345

#切片后的数组
print(arr)

运行结果:
在这里插入图片描述

五.NumPy 高级索引

整数数组索引
在一个二维数组中,每个索引值对应的元素不再是一个值,而是一个一维数组:

arr = np.array([[1,2,3],[4,5,6],[7,8,9]])

print(arr[2])

print(arr[0][2])

运行结果:
在这里插入图片描述
在二维数组的索引上,我们可以将a[x][y]中x轴看做行,y轴看做列。

对数组进行切片索引:

可以借助切片 : 或 … 与索引数组组合:

a = np.array([[1,2,3], [4,5,6],[7,8,9]])

b = a[1:3, 1:3]

c = a[1:3,[1,2]]

d = a[...,1:]

print(b)

print(c)

print(d)

运行结果:
在这里插入图片描述
布尔索引

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

x = np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11]])

print(x[x>5])

运行结果:
在这里插入图片描述
与数学操作类似,数组的比较操作也可以向量化的:

names = np.array(['Bob','Joe','Will','Bob','Will','Joe','Joe'])

print(names == 'Bob')

print(names != 'Bob')

运行结果:
在这里插入图片描述
当要选择三个名字中的两个时,可以对多个布尔值条件进行联合,需要使用数学操作符如&(and)和|(or):

mask = (names == 'Bob') | (names == 'Will')

print(mask)

运行结果:
在这里插入图片描述
花式索引

花式索引是NumPy用来描述使用整型数组。

设有一个8*4的数组:

arr = np.empty((8,4))

for i in range(8):

    arr[i] = i

print(arr)

运行结果:
在这里插入图片描述
也可以通过传递一个包含指明所需顺序的列表或数组来完成:

arr = np.empty((8,4))

for i in range(8):

    arr[i] = i

# print(arr)

print(arr[[4,3,0,6]])

运行结果:
在这里插入图片描述

六.数组转置和换轴

修改数组形状

函数描述
reshape不改变数据的条件下修改形状
flat数组元素迭代器
flatten返回一份数组拷贝,对拷贝所做的修改不会影响原始数组
ravel返回展开数组

翻转数组

函数描述
transpose对换数组的维度
ndarray.T和 self.transpose() 相同
rollaxis向后滚动指定的轴
swapaxes对换数组的两个轴
数组拥有transpose方法,也有特殊的T属性:
arr = np.arange(15).reshape((3,5))

print(arr)

print(arr.T)

运行结果:
在这里插入图片描述
对于更高维度的数组,transpose方法可以接收包含轴编号的元组,用于置换轴:

arr = np.arange(16).reshape((2,2,4))

print(arr)

print(arr.transpose((1,0,2)))

运行结果:
在这里插入图片描述
在这里可以看做为一个立体坐标轴,将原数组arr利用transpose原样输出的话是arr.transpose((0, 1, 2)),在这里arr.transpose((1,0,2))就是2轴不变,将0轴和1轴互相调换。
ndarray有一个swapaxes方法,该方法接收一对轴编号作为参数,并对轴进行调整用于重组数据:

arr = np.arange(16).reshape((2,2,4))

print(arr)

print(arr.swapaxes(1,2))

运行结果:
在这里插入图片描述

七.通用函数:快速的逐元素数组函数

通用函数,ufunc。某些简单函数接收一个或多个标量数值,并产生一个或多个标量结果,而通用函数就是对这些简单函数的向量化封装。
一元通用函数

函数描述
abs、fabs逐元素地计算整数、浮点数或复数的绝对值
sqrt计算每个元素的平方根
square计算每个元素的平方
exp计算每个元素的自然指数值e^x
log、log10、log2、log1p分别对应:自然对数、对数10为底、对数2为底、log(1+x)
sign计算每个元素的符号值:1(正数)、0(0)、-1(负数)
ceil计算每个元素的最高整数值
floor计算每个元素的最小整数值
rint将元素保留到整数位,并保持dtype
modf分别将数组的小数部分和整数部分按数组形式返回
isnan返回数组中的元素是否是一个NaN,形式为布尔值数组
isfinite、isinf分别返回数组中的元素是否有限、是否无限,形式为布尔值数组
cos、cosh、sin、sinh、tan、tanh常规的双曲三角函数
arccos、arccosh、arcsin、arcsinh、arctan、arctanh反三角函数
logical_not对数组的元素按位取反

二元通用函数

函数描述
add将数组中对应的元素相加
subtract从第一个数组中减去第二个数组中的元素
multiply数组元素相乘
divide、floor_divide除法或向下圆整除法(丢弃余数)
power对第一个数组中的元素A,根据第二个数组中的相应元素B,计算A^B
maximum、fmax元素级的最大值计算。fmax将忽略NAN
minimum、fmin元素级的最小值计算。fmax将忽略NAN
mod元素级的求模计算(除法的余数)
copysign将第二个数组中的值的符号复制给第一个数组中的值。
greater、greater_equal、less、less_equal、equal、not_equal执行元素级的比较运算,最终产生布尔型数组。相当于运算符>丶>=丶<丶<=丶==丶!=
logical_and、logical_or、logical_xor执行元素级的真值逻辑运算。相当于运算符&丶|丶^(与或异)

八.使用数组进行面向数组编程

使用NumPy数组可以使你利用简单的数组表达式完成多种数据操作任务,而无须写些大量循环。这种利用数组表达式来替代显示循环的方法,称为向量化。
假设我们想要对一些网格数据来计算函数sqrt(x ^ 2 + y ^ 2)的值。np.meshgrid函数接收两个一维数组,并根据两个数组的所有(x,y)对生成一个二维矩阵:

points = np.arange(-5,5,0.01)

xs,ys = np.meshgrid(points,points)

z = np.sqrt(xs ** 2 + ys ** 2)

print(z)

运行结果:
在这里插入图片描述
将条件逻辑作为数组操作:

xarr = np.array([1.1,1.2,1.3,1.4,1.5])

yarr = np.array([2.1,2.2,2.3,2.4,2.5])

cond = np.array([True,False,True,True,False])

result = [(x if c else y)
          for x,y,c in zip(xarr,yarr,cond)]

print(result)

运行结果:
在这里插入图片描述
numpy.where函数是三元表达式x if condition else y的向量化版本,上述代码可以通过np.where简单地完成:

result = np.where(cond,xarr,yarr)

print(result)

运行结果:
在这里插入图片描述
数学和统计方法:

sum沿着轴向计算所有元素的累和,0长度的数组,累和为0
mean数学平均,0长度的数组平均值为NaN
std、var标准差和方差,可以选择自由度调整(默认分母是n)
min、max最小值和最大值
argmin、argmax最小值和最大值的位置
cumsum从0开始元素累积和
cumprod从1开始元素累积积

布尔值数组的方法:
sum函数:可以用于计算布尔值数组中True的个数

arr = np.random.randn(100)

#正值的个数
print((arr > 0).sum())

运行结果:
在这里插入图片描述
any函数:检查数组中是否至少有一个True

bools = np.array([False,False,True,False])

print(bools.any())

运行结果:
在这里插入图片描述
all函数:检查是否每个值都是True

bools = np.array([False,False,True,False])

print(bools.all())

运行结果:
在这里插入图片描述
排序:
Numpy数组可以使用sort方法按位置排序

numpy.sort(a, axis, kind, order)

a: 要排序的数组
axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
kind: 默认为’quicksort’(快速排序)
order: 如果数组包含字段,则是要排序的字段

arr = np.random.randn(6)
#未排序的数组
print(arr)

arr.sort()
#排序后的数组
print(arr)

运行结果:
在这里插入图片描述
唯一值与其他集合逻辑:
unique函数:返回一个无元素重复的数组或列表

ints = np.array([3,3,2,2,1,1,5,5,4,4])

print(np.unique(ints))

运行结果:
在这里插入图片描述
其他数组集合操作:

unique(x)计算x的唯一值,并排序
intersect1d(x,y)计算x和y的交集,并排序
union1d(x,y)计算x和y的并集,并排序
in1d(x,y)计算x中的元素是否包含在y中,返回一个布尔值数组
setdiff1d(x,y)差集,在x中但不在y中的元素
setxor1d(x,y)异或集,在x或y中,但不属于x、y交集的元素

九.线性代数

NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能。

常用numpy.linalg函数:

函数描述
dot两个数组的点积,即元素对应相乘。
vdot两个向量的点积
inner两个数组的内积
matmul两个数组的矩阵积
determinant数组的行列式
solve求解线性矩阵方程
inv计算矩阵的乘法逆矩阵

x.dot(y)等价于np.dot(x,y)

x = np.array([[1,2,3],[4,5,6]])

y = np.array([[1,2],[3,4],[7,8]])

print(x.dot(y))

print(np.dot(x,y))

运行结果:
在这里插入图片描述

十.伪随机数生成

numpy.random模块对Python内置的random进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数。

函数描述
seed向随机数生成器传递随机状态种子
permutation返回一个序列的随机排列,或者返回一个乱序的整数范围序列
shuffle随机排列一个序列
rand从均匀分布中抽取样本
randint根据给定的由低到高的范围抽取随机整数
randn从均值0方差1的正态分布中抽取样本
binomial从二项分布中抽取样本
normal从正态分布中抽取样本
beta从beta分布中抽取样本
chisquare从卡方分布中抽取样本
gamma从伽马分布中抽取样本
uniform从均匀分布中抽取样本
使用normal获得一个4*4的正态分布样本数组:
sample = np.random.normal(size = (4,4))

print(sample)

运行结果:
在这里插入图片描述
伪随机数是由具有确定行为的算法根据随机数生成器中的随机数种子生成的,
可以通过np.random.seed更改NumPy的随机种子。

  • 1
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值