Python拉勾网爬虫实现

拉勾网爬虫

解析拉勾网网站:

在拉勾网上输入关键词后我们可以得到相应的岗位信息(这里以Python为例),我们先获取到网站中所有的城市信息,再通过城市信息遍历爬取全国的Python职位信息。
在这里插入图片描述
在数据包的Headers中我们可以得到网页头的相关信息,如网页URL、请求方法、Cookies信息、用户代理等相关信息。
在这里插入图片描述
获取所有城市:

class CrawlLaGou(object):
    def __init__(self):
        # 使用session保存cookies信息
        self.lagou_session = requests.session()
        self.header = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'
        }
        self.city_list = ""

    #获取城市
    def crawl_city(self):
        #使用正则表达式获取HTML代码中的城市名称
        city_search = re.compile(r'www\.lagou\.com\/.*\/">(.*?)</a>')
        #网页URL
        city_url = "https://www.lagou.com/jobs/allCity.html"
        city_result = self.crawl_request(method="GET", url=city_url)
        self.city_list = city_search.findall(city_result)
        self.lagou_session.cookies.clear()

    #返回结果
    def crawl_request(self,method,url,data=None,info=None):
        while True:
            if method == "GET":
                response = self.lagou_session.get(url=url,headers=self.header)
            elif method == "POST":
                response = self.lagou_session.post(url=url, headers=self.header, data=data)
            response.encoding = "utf8"
            return response.text

if __name__ == '__main__':
    lagou = CrawlLaGou()
    lagou.crawl_city()
    print(lagou.city_list)

其中self.header中的User-Agent信息也在上图中Headers中可以找到。上述代码先将url所对应的网页源码爬取下来,再通过正则表达式获取到网页中的所有城市名称。

运行结果:
在这里插入图片描述
在我们获取完所有的城市名称信息后,我们开始获取城市对应的职位信息,我们回到职位列表(https://www.lagou.com/jobs/list_python),找到存放有职位信息的数据包,以及其对应的请求头部信息。
在这里插入图片描述
存放职位信息的数据包:
在这里插入图片描述
在得到网页的职位信息后,我们可以使用https://www.json.cn/进行解析,并找出我们需要的信息内容。
在这里插入图片描述
从json解析中,我们可以得到职位信息的列表为’content’→’positionResult’→’result’

获取职位信息:

#获取职位信息
def crawl_city_job(self,city):
    #职位列表数据包的url
    first_request_url = "https://www.lagou.com/jobs/list_python?city=%s&cl=false&fromSearch=true&labelWords=&suginput="%city
    first_response = self.crawl_request(method="GET", url=first_request_url)
    #使用正则表达式获取职位列表的页数
    total_page_search = re.compile(r'class="span\stotalNum">(\d+)</span>')
    try:
        total_page = total_page_search.search(first_response).group(1)
    except:
        # 如果没有职位信息,直接return
        return
    else:
        for i in range(1, int(total_page) + 1):
            #data信息中的字段
            data = {
                "pn":i,
                "kd":"python"
            }
            #存放职位信息的url
            page_url = "https://www.lagou.com/jobs/positionAjax.json?city=%s&needAddtionalResult=false" % city
            #添加对应的Referer
            referer_url = "https://www.lagou.com/jobs/list_python?city=%s&cl=false&fromSearch=true&labelWords=&suginput="% city
            self.header['Referer'] = referer_url.encode()
            response = self.crawl_request(method="POST",url=page_url,data=data,info=city)
            lagou_data = json.loads(response)
            #通过json解析得到的职位信息存放的列表
            job_list = lagou_data['content']['positionResult']['result']
            for job in job_list:
                print(job)

在上述代码中,先通过存放职位列表的数据包url(first_request_url)中获取网页代码中的页码信息,并通过页码来判断是否存在岗位信息,若没有则返回。若有,则通过存放职位信息的数据包url(page_url),并添加对应的data数据和Refer信息,来获取该数据包中的所有信息,最后通过’content’→’positionResult’→’result’的列表顺序来获得到我们所需要的职位信息。
运行结果:
在这里插入图片描述

解决“操作太频繁,请稍后再试”的问题:

如在爬虫运行过程中出现“操作太频繁”则说明该爬虫已经被网站发现,此时我们需要清除cookies信息并重新获取该url,并让程序停止10s后再继续运行。

#返回结果
def crawl_request(self,method,url,data=None,info=None):
    while True:
        if method == "GET":
            response = self.lagou_session.get(url=url,headers=self.header)
        elif method == "POST":
            response = self.lagou_session.post(url=url, headers=self.header, data=data)
        response.encoding = "utf8"
        #解决操作太频繁问题
        if '频繁' in response.text:
            print(response.text)
            self.lagou_session.cookies.clear()
            first_request_url = "https://www.lagou.com/jobs/list_python?city=%s&cl=false&fromSearch=true&labelWords=&suginput=" % info
            self.crawl_request(method="GET", url=first_request_url)
            time.sleep(10)
            continue 
        return response.text

将爬取到的数据保存到数据库:

在以上我们爬取到的结果中,我们只是爬取了在result列表中的所有数据,可读性还比较差。我们需要创建一个数据库,并筛选出我们需要的数据插入进去。

创建数据库:
在这里插入图片描述
创建数据库:

#创建数据库连接
engine = create_engine("mysql+pymysql://root:root@127.0.0.1:3306/lagou?charset=utf8")
#操作数据库
Session = sessionmaker(bind=engine)
#声明一个基类
Base = declarative_base()

class Lagoutables(Base):
    #表名称
    __tablename__ = 'lagou_java'
    #id,设置为主键和自动增长
    id = Column(Integer,primary_key=True,autoincrement=True)
    #职位id
    positionID = Column(Integer,nullable=True)
    # 经度
    longitude = Column(Float, nullable=False)
    # 纬度
    latitude = Column(Float, nullable=False)
    # 职位名称
    positionName = Column(String(length=50), nullable=False)
    # 工作年限
    workYear = Column(String(length=20), nullable=False)
    # 学历
    education = Column(String(length=20), nullable=False)
    # 职位性质
    jobNature = Column(String(length=20), nullable=True)
    # 公司类型
    financeStage = Column(String(length=30), nullable=True)
    # 公司规模
    companySize = Column(String(length=30), nullable=True)
    # 业务方向
    industryField = Column(String(length=30), nullable=True)
    # 所在城市
    city = Column(String(length=10), nullable=False)
    # 岗位标签
    positionAdvantage = Column(String(length=200), nullable=True)
    # 公司简称
    companyShortName = Column(String(length=50), nullable=True)
    # 公司全称
    companyFullName = Column(String(length=200), nullable=True)
    # 工资
    salary = Column(String(length=20), nullable=False)
    # 抓取日期
    crawl_date = Column(String(length=20), nullable=False)

插入数据:

def __init__(self):
    self.mysql_session = Session()
    self.date = time.strftime("%Y-%m-%d",time.localtime())

#数据存储方法
def insert_item(self,item):
    #今天
    date = time.strftime("%Y-%m-%d",time.localtime())
    #数据结构
    data = Lagoutables(
        #职位ID
        positionID = item['positionId'],
        # 经度
        longitude=item['longitude'],
        # 纬度
        latitude=item['latitude'],
        # 职位名称
        positionName=item['positionName'],
        # 工作年限
        workYear=item['workYear'],
        # 学历
        education=item['education'],
        # 职位性质
        jobNature=item['jobNature'],
        # 公司类型
        financeStage=item['financeStage'],
        # 公司规模
        companySize=item['companySize'],
        # 业务方向
        industryField=item['industryField'],
        # 所在城市
        city=item['city'],
        # 职位标签
        positionAdvantage=item['positionAdvantage'],
        # 公司简称
        companyShortName=item['companyShortName'],
        # 公司全称
        companyFullName=item['companyFullName'],
         # 工资
        salary=item['salary'],
        # 抓取日期
        crawl_date=date
    )

    #在存储数据之前查询表里是否有这条职位信息
    query_result = self.mysql_session.query(Lagoutables).filter(Lagoutables.crawl_date==date,
                                                                Lagoutables.positionID == item['positionId']).first()

    if query_result:
        print('该职位信息已存在%s:%s:%s' % (item['positionId'], item['city'], item['positionName']))
    else:
        #插入数据
        self.mysql_session.add(data)
        #提交数据
        self.mysql_session.commit()
        print('新增职位信息%s' % item['positionId'])

运行结果:
在这里插入图片描述
此时职位信息已保存到数据库中:
在这里插入图片描述
完整代码:
github:https://github.com/KeerZhou/crawllagou
csdn:https://download.csdn.net/download/keerzhou/11584694

展开阅读全文
  • 5
    点赞
  • 1
    评论
  • 11
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值