MindCon 极客周
十二月
昇思MindSpore拍了拍你
第五届MindCon极客周强势回归
不论你是AI领域的开源小白还是开源大神
都不给2023留遗憾
赶快认领任务吧
“孢”显智慧
认领SIG任务,体验MindQuantum、MindFlow等AI4Sci前沿
MindSpore Flow SIG
MindSpore Flow SIG着眼于昇思MindFlow,充分利用昇思MindSpore的优点,持续完善套件功能,拓展社区生态,为广大科研人员,老师和学生提供高效易用的AI计算流体仿真套件的同时,为这个领域中,有着强大影响力和浓厚的兴趣的人们提供一个能够共同交流合作的平台。
| 任务一:求解一维有粘性情况下的Burgers方程(15分)
任务描述:
使用convLSTM方法,基于MindSpore及MindFlow套件进行开发,求解一维有粘性情况下的Burgers方程。要求单步外推验证损失(RMSE)低于0.1。
实现参考:https://gitee.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/kno1d
任务链接:
https://gitee.com/mindspore/community/issues/I8OAWK?from=project-issue
| 任务二:求解二维Burgers方程(30分)
任务描述:
使用PINNs方法,基于MindSpore及MindFlow套件进行开发,求解二维Burgers方程。要求单步外推验证损失(RMSE)低于0.1。
实现参考:https://gitee.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_forward
任务链接:
https://gitee.com/mindspore/community/issues/I8OB27?from=project-issue
| 任务三:用PINNs求解一维扩散方程(15分)
任务描述:
用PINNs求解一维扩散方程,要求验证误差小于0.1(RMSE)。
实现参考:
https://gitee.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/continuous
任务链接:
https://gitee.com/mindspore/community/issues/I8OB4J?from=project-issue
MindSpore Flow SIG 任务交流群
MindSpore Quantum SIG
MindSpore Quantum SIG致力于和开发者共同打造灵活高效、易学易用的量子计算框架,持续提升MindQuantum功能、性能和易用性,助力量子计算技术研究和创新。
MindSpore Quantum SIG是为广大开发者提供的共同交流和学习的平台,欢迎大家一起来分享、交流和共同提升MindSpore Quantum功能特性,帮助开发者学好,用好MindSpore Quantum。SIG成员将获得更多专家指导和开发资源支持。
| 任务一:Stabilizer 模拟器原形开发(80分)
任务描述:
Stabilizer模拟器在量子误差缓解、量子纠错等领域有重要应用,本任务旨在实现一个python版本的Stabilizer,实现基本的功能。
验收规则:
Stabilizer模拟器能够实现对2比特所有Clifford群元的模拟。
任务链接:
https://gitee.com/mindspore/community/issues/I8NNBL?from=project-issue
| 任务二:各种多体物理模型的调研总结(50分)
任务描述:
总结业界较常研究的多体物理模型,例如 ising model、Hubbard model等,请按照样例要求完成,完成XXZModel、XYZModel、FermionHubbardModel和BoseHubbardModel模型的开发。
验收规则:
在接口注释部分写清楚哈密顿量的具体表达式,模型输出的哈密顿量要与注释部分的表达式一致。
任务链接:
https://gitee.com/mindspore/community/issues/I8NOGW?from=project-issue
| 任务三:QAOA量子优势的衡量(40分)
任务描述:
QAOA是常用的量子近似优化算法,它可以看作是在经典平均场算法上添加量子涨落。而为了衡量QAOA在哪些问题上能展现量子优势,可以使用《Mean-Field Approximate Optimization Algorithm》文中提出的Lyapunov指数(文中式70)进行衡量。对于随机SK model,请完成计算该指数的代码并复现图中的FIG. 7.
验收规则:
对于随机SK model,请完成计算该指数的代码复现,计算结果与原文的FIG.7一致。
任务链接:
https://gitee.com/mindspore/community/issues/I8NOHN?from=project-issue
| 任务四:经典求解加速量子优化(60分)
任务描述:
在传统的QAOA中,线路从所有比特串的等权叠加态开始演化。但如果提前使用经典算法求解近似解,然后使用量子线路检索其邻域可以获得更优质的解。CBQOA(Classically-Boosted Quantum Optimization Algorithm)提出了这样一种高效实现连续时间量子行走的优化算法,请利用mindquantum实现该算法并在max 3sat问题上复现文中Figure 4的结果。
验收规则:
请利用mindquantum实现该算法在max 3sat问题上的复现,计算结果与原文的Figure 4一致。
任务链接:
https://gitee.com/mindspore/community/issues/I8NOIU?from=project-issue
| 任务五:量子生成模型的组合优化求解(60分)
任务描述:
利用生成模型求解组合优化问题的思路是:首先产生一部分次优解的数据(可随机筛选或传统求解)称为种子数据,然后通过调整该数据分布使得更趋近于最优解,最后使用生成模型学习该调整过的分布然后输出新的样本,以期望从中得到更好的解,这种方案也被称作加速器(booster)。GEO文章使用张量网络生成模型实现了这一booster,请将该生成模型替换为量子线路波恩机,基于mindquantum实现量子生成模型的组合优化booster代码,对于给定的伊辛模型和初始次优样本,学习并输出新的样本。
验收规则:
代码输入为伊辛模型和次优样本,输出为量子线路波恩机学习产生的新样本,并画出前后分布的比较图。
任务链接:
https://gitee.com/mindspore/community/issues/I8NOM0?from=project-issue
MindSpore Quantum SIG 任务交流群
Trusted AI SIG
Trusted AI SIG 聚焦于人工智能领域的模型、数据可信技术,致力于打造安全可靠的AI计算框架,主要包括模型鲁棒性和可靠性、隐私保护、模型部署安全等。
| 任务一:基于MindSpore开发一个提示词注入攻击检测模型(30分)
任务描述:
基于MindSpore开发一个提示词注入攻击检测模型,使得在常见中英文提示词注入样本数据集上的漏报率小于5%,正常样本误报率小于10%。
推荐数据集:
1)Hugging Face JasperLS prompt-injection英文数据集:
https://huggingface.co/datasets/JasperLS/prompt-injections
2)清华SafetyBench中文数据集:
https://github.com/thu-coai/Safety-Prompts
任务链接:
https://gitee.com/mindspore/community/issues/I8NN8X?from=project-issue
Trusted AI SIG 任务交流群
第五届MindCon极客周
点击图片查看全部任务:
第五届 MindCon 极客周年末强势回归,以昇思 “显眼孢” 争夺赛为主题,发布 5 大任务组成,个人或团队均可申请出战!积分最高者胜!
请在issue下方评论区留言“ 任务序号+报名姓名 ”即可,如“1+小孢子”,每个任务都可多人领取!谢谢各位小伙伴的支持!本任务积分将累计在【第五届MindCon极客周】个人赛分数活动时间
赛程 | 时间 | 说明 |
---|---|---|
比赛 | 2023.12.12- 2024.01.19 | 项目提交 |
项目评审 | 2024.01.23- 2024.01.26 | 组织项目评审 |
结果公布 | 2024.01.29- 2024.02.02 | 发布获奖名单 |
活动奖项
最终由第五届MindCon实际积分总排名赢得奖项
获奖线:60分以上
以下奖项仅供参考,实际礼品根据积分排名而定
立即报名
关于MindSpore SIG
昇思MindSpore社区欢迎业界专家、学术伙伴在社区成立MindSpore Special Interest Groups(简称SIG),作为社区领域技术代言人,打造领域技术品牌,共建昇思MindSpore开源生态。MindSpore社区成立SIG的初衷是为该领域的专家、教授和学生提供一个开放交流的平台,通过会议分享、项目开发等活动促进技术交流、合作共赢,并使得SIG成员的影响力和技术能力得到提升,截止目前,MindSpore SIG共计成立30+。