MindQA: 基于MindSpore的智能问答系统
项目概述
MindQA是一个基于MindSpore框架构建的智能问答系统,旨在提供高效、准确的信息检索和问答服务。本项目采用检索增强生成(RAG)技术,结合了先进的语言模型和高效的检索机制,为用户提供精准的问答体验。目前系统已收录3634篇涵盖MindSpore生态的技术文档,为用户提供全面的知识支持。[1]
核心特性
- 多模式检索:支持问题-问题(QQ)、问题-内容(QC)和问题-答案(QA)三种检索模式,满足不同场景需求 [2]
- 基于MindSpore的模型优化:利用MindSpore框架的高性能计算能力,提升模型推理速度 [3]
- 灵活的检索策略:集成ElasticSearch搜索引擎,实现高效的文本检索 [1]
- 模块化设计:系统架构清晰,便于扩展和定制化开发 [4]
- 支持MindSpore原生LLM部署:无缝集成MindSpore平台上训练的大语言模型,提供更高效的推理性能 [3]
- 自定义知识库扩展:用户可以轻松添加自己的文档到知识库中,扩展系统的问答能力 [1]
技术架构
MindQA采用前后端分离的架构设计:
- 后端:基于Flask构建的API服务,负责处理检索和问答逻辑
- 前端:基于Node.js的Web界面,提供用户友好的交互体验
- 核心组件:
QueryProcessor.py
:查询处理模块,负责解析和处理用户输入SimpleRetriever.py
:检索模块,实现文档检索功能LLMProxy.py
:语言模型代理,管理与大语言模型的交互ESSearch.py
:ElasticSearch接口,提供高效的文本搜索能力 [2]
知识库内容
MindQA目前收录了3634篇涵盖MindSpore生态的技术文档,内容包括但不限于:
- MindSpore框架基础教程和API文档
- 计算机视觉模型(如ResNet、YOLO、SSD等)的实现指南
- 自然语言处理模型(如BERT、Transformer等)的应用案例
- 图神经网络和推荐系统的开发文档
- 模型部署和优化的最佳实践
- MindSpore社区贡献指南和开发规范
- 各类应用场景的实战教程和示例代码 [1]
快速开始
环境要求
- Python 3.7+
- MindSpore 1.8+
- ElasticSearch 7.x
- Node.js 14+ (前端)
安装步骤
克隆仓库
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
安装依赖
pip install -r requirements.txt
npm install # 安装前端依赖
```bash
pip install -r requirements.txt
npm install # 安装前端依赖
```bash
pip install -r requirements.txt
npm install # 安装前端依赖
```bash
pip install -r requirements.txt
npm install # 安装前端依赖
配置系统
编辑config.yaml
文件,设置模型路径、ElasticSearch连接等参数。
启动服务
# 启动后端API服务
python app.py
# 启动前端服务(另一个终端)
node server.js
```bash
# 启动后端API服务
python app.py
# 启动前端服务(另一个终端)
node server.js
```bash
# 启动后端API服务
python app.py
# 启动前端服务(另一个终端)
node server.js
```bash
# 启动后端API服务
python app.py
# 启动前端服务(另一个终端)
node server.js
访问系统
打开浏览器访问https://localhost:3000
即可使用MindQA系统。[1]
检索模式说明
MindQA支持三种检索模式,可以通过配置文件灵活切换:
- QC模式:以内容为索引,返回相关内容
- QA模式:以答案为索引,直接返回答案
- QQ模式:以问题为索引,返回相关问题的答案
- ES模式: 进行关键词匹配,返回相关内容
自定义知识库
MindQA提供了简便的知识库扩展机制,用户可以按照以下步骤添加自己的文档:
- 将文档放置在
docs/custom
目录下(支持Markdown、PDF、TXT等格式) - 运行索引构建脚本:
python scripts/build_index.py --source custom
- 重启服务以应用新的知识库
通过这种方式,用户可以根据自己的需求构建专属知识库,提升问答系统的针对性和准确性。[1]
与MindSpore的集成
MindQA充分利用了MindSpore框架的优势:
- 自动微分能力:简化模型训练过程
- 高效的分布式训练:支持大规模模型训练
- 全场景部署:支持端-边-云协同推理
- 动态图执行模式:便于模型调试和开发 [3]
MindSpore LLM支持
MindQA原生支持在MindSpore平台上训练和部署的大语言模型,包括:
- PanGu-α系列模型
- CodeGeeX编程助手
- 通用对话模型
- 领域特定微调模型
系统提供了简单的配置接口,只需在配置文件中指定模型路径和参数,即可无缝切换不同的MindSpore LLM模型。[3]
如何贡献
我们非常欢迎社区成员参与MindQA的开发和改进。贡献方式包括但不限于:
- 提交Issue:报告bug或提出新功能建议
- 提交Pull Request:贡献代码、文档或测试用例
- 参与讨论:在社区论坛分享使用经验和建议
- 扩充知识库:贡献高质量的MindSpore相关文档
贡献前请确保阅读MindSpore贡献指南。[4]
未来规划
- 集成更多MindSpore优化的预训练模型
- 增强多语言支持能力
- 开发领域特定的知识库适配器
- 优化检索算法,提高准确率和召回率
- 增加多模态问答能力
- 扩展文档覆盖范围,纳入更多MindSpore生态资源 [1]
社区与支持
- MindSpore社区:https://www.mindspore.cn/community
- 项目仓库:https://gitee.com/ymy5519/MindQA
- 问题反馈:通过Gitee Issues提交问题