海量文档无处寻觅?一个入口解决MindSpore相关文档查询问题

MindQA: 基于MindSpore的智能问答系统

项目概述

MindQA是一个基于MindSpore框架构建的智能问答系统,旨在提供高效、准确的信息检索和问答服务。本项目采用检索增强生成(RAG)技术,结合了先进的语言模型和高效的检索机制,为用户提供精准的问答体验。目前系统已收录3634篇涵盖MindSpore生态的技术文档,为用户提供全面的知识支持。[1]

核心特性

  • 多模式检索:支持问题-问题(QQ)、问题-内容(QC)和问题-答案(QA)三种检索模式,满足不同场景需求 [2]
  • 基于MindSpore的模型优化:利用MindSpore框架的高性能计算能力,提升模型推理速度 [3]
  • 灵活的检索策略:集成ElasticSearch搜索引擎,实现高效的文本检索 [1]
  • 模块化设计:系统架构清晰,便于扩展和定制化开发 [4]
  • 支持MindSpore原生LLM部署:无缝集成MindSpore平台上训练的大语言模型,提供更高效的推理性能 [3]
  • 自定义知识库扩展:用户可以轻松添加自己的文档到知识库中,扩展系统的问答能力 [1]

技术架构

MindQA采用前后端分离的架构设计:

  • 后端:基于Flask构建的API服务,负责处理检索和问答逻辑
  • 前端:基于Node.js的Web界面,提供用户友好的交互体验
  • 核心组件:
    • QueryProcessor.py:查询处理模块,负责解析和处理用户输入
    • SimpleRetriever.py:检索模块,实现文档检索功能
    • LLMProxy.py:语言模型代理,管理与大语言模型的交互
    • ESSearch.py:ElasticSearch接口,提供高效的文本搜索能力 [2]

知识库内容

MindQA目前收录了3634篇涵盖MindSpore生态的技术文档,内容包括但不限于:

  • MindSpore框架基础教程和API文档
  • 计算机视觉模型(如ResNet、YOLO、SSD等)的实现指南
  • 自然语言处理模型(如BERT、Transformer等)的应用案例
  • 图神经网络和推荐系统的开发文档
  • 模型部署和优化的最佳实践
  • MindSpore社区贡献指南和开发规范
  • 各类应用场景的实战教程和示例代码 [1]

快速开始

环境要求

  • Python 3.7+
  • MindSpore 1.8+
  • ElasticSearch 7.x
  • Node.js 14+ (前端)

安装步骤

克隆仓库

git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA

```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA
```bash
git clone https://gitee.com/ymy5519/MindQA.git
cd MindQA

安装依赖

pip install -r requirements.txt
npm install  # 安装前端依赖
```bash
pip install -r requirements.txt
npm install  # 安装前端依赖

```bash
pip install -r requirements.txt
npm install  # 安装前端依赖
```bash
pip install -r requirements.txt
npm install  # 安装前端依赖

    配置系统

    编辑config.yaml文件,设置模型路径、ElasticSearch连接等参数。

    启动服务

    # 启动后端API服务
    python app.py
    
    # 启动前端服务(另一个终端)
    node server.js
    ```bash
    # 启动后端API服务
    python app.py
    
    # 启动前端服务(另一个终端)
    node server.js
    
    ```bash
    # 启动后端API服务
    python app.py
    
    # 启动前端服务(另一个终端)
    node server.js
    ```bash
    # 启动后端API服务
    python app.py
    
    # 启动前端服务(另一个终端)
    node server.js

      访问系统

      打开浏览器访问https://localhost:3000即可使用MindQA系统。[1]

      检索模式说明

      MindQA支持三种检索模式,可以通过配置文件灵活切换:

      • QC模式:以内容为索引,返回相关内容
      • QA模式:以答案为索引,直接返回答案
      • QQ模式:以问题为索引,返回相关问题的答案
      • ES模式: 进行关键词匹配,返回相关内容

      自定义知识库

      MindQA提供了简便的知识库扩展机制,用户可以按照以下步骤添加自己的文档:

      1. 将文档放置在docs/custom目录下(支持Markdown、PDF、TXT等格式)
      2. 运行索引构建脚本:python scripts/build_index.py --source custom
      3. 重启服务以应用新的知识库

      通过这种方式,用户可以根据自己的需求构建专属知识库,提升问答系统的针对性和准确性。[1]

      与MindSpore的集成

      MindQA充分利用了MindSpore框架的优势:

      • 自动微分能力:简化模型训练过程
      • 高效的分布式训练:支持大规模模型训练
      • 全场景部署:支持端-边-云协同推理
      • 动态图执行模式:便于模型调试和开发 [3]

      MindSpore LLM支持

      MindQA原生支持在MindSpore平台上训练和部署的大语言模型,包括:

      • PanGu-α系列模型
      • CodeGeeX编程助手
      • 通用对话模型
      • 领域特定微调模型

      系统提供了简单的配置接口,只需在配置文件中指定模型路径和参数,即可无缝切换不同的MindSpore LLM模型。[3]

      如何贡献

      我们非常欢迎社区成员参与MindQA的开发和改进。贡献方式包括但不限于:

      1. 提交Issue:报告bug或提出新功能建议
      2. 提交Pull Request:贡献代码、文档或测试用例
      3. 参与讨论:在社区论坛分享使用经验和建议
      4. 扩充知识库:贡献高质量的MindSpore相关文档

      贡献前请确保阅读MindSpore贡献指南。[4]

      未来规划

      • 集成更多MindSpore优化的预训练模型
      • 增强多语言支持能力
      • 开发领域特定的知识库适配器
      • 优化检索算法,提高准确率和召回率
      • 增加多模态问答能力
      • 扩展文档覆盖范围,纳入更多MindSpore生态资源 [1]

      社区与支持

      • MindSpore社区:https://www.mindspore.cn/community
      • 项目仓库:https://gitee.com/ymy5519/MindQA
      • 问题反馈:通过Gitee Issues提交问题
      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值