在制造业转型升级的浪潮下,如何构建全天候风险预警体系?如何让三级安全监管真正落地?如何用有限人力应对海量数据?
一 AI开启智能安全管理新时代
通过部署AI视频风险识别系统,我们的安全巡检效率提升了10倍,管理范围从重点区域扩展到全厂覆盖,真正实现了风险管控关口前移。" 倍特威视分享了某汽车制造工厂的数字化转型案例。
"系统有效解决了员工安全素养参差不齐、监管标准执行差异、隐患整改闭环难等痛点。" 通过倍特威视智能算法对2000余路摄像头的实时解析,管理覆盖率从人工巡检的20%提升至95%,安全员工作重心转向高风险作业的深度管控。系统自动识别未佩戴防护装备、违规操作等显性风险,日均处理预警3000余次,拦截85%的可视化安全隐患。
二 大模型赋能风险预测新维度
为攻克隐性风险识别难题,该厂于2024年6月部署了基于昇腾算力的新一代倍特威视安全生产大模型系统。这套系统不仅能识别肢体动作等表面风险,更能通过设备状态、环境参数、工艺流程等多维数据分析,预判机械故障、疲劳作业等深层隐患。倍特威视表示:"大模型就像24小时在线的安全专家,既能抓现行违规,更能教预防之道。"
升级后的系统在《工业企业安全生产标准化基本规范》要求的核心指标上识别准确率达91%,经过产线数据持续训练后性能持续优化。系统突破传统算法局限,可智能分析作业流程的逻辑合理性,如吊装作业路径规划是否合规、高危工序防护措施是否充分等。更通过虚拟现实技术生成标准化操作示范,以"AI教练"模式提升员工安全作业能力。
# 01数据驱动安全管理新生态
倍特威视深度融合工厂MES、EHS等管理系统,构建起工业知识图谱。通过解析十年事故案例库和百万级操作视频,大模型可精准定位各工序风险特征,为不同岗位定制培训课程。在危化品车间,系统甚至能根据气体浓度变化趋势,提前30分钟预警泄漏风险。
# 02DeepSeek大模型:异常事件分析与领导决策支持
针对抓取的异常事件,利用DeepSeek大模型的数据总结能力为厂领导提供详细的改善参考意见。例如在某焊接车间,系统通过分析发现违规操作行为,及时为车间主任提供了包括强化现场巡检、增加安全培训等具体的改善建议。根据这些建议,迅速采取措施进行改进,使车间违规操作月均下降82%,安全隐患整改周期从72小时缩短至4小时。
DeepSeek大模型还能通过对历史数据的分析,预测可能发生的异常事件,为领导提供前瞻性的决策支持。
"安全管控经历了两次质变:第一次实现从人防到技防的转变,第二次完成从事后追责到事前预防的跨越。" 当工业大模型遇上视频物联网,安全生产正在经历智能化革命。从被动响应到主动预防,从单点管理到全局洞察,AI视频识别技术正在重新定义工厂安全管理的边界。在这条用算法编织的安全防线上,每个摄像头都成为守护生命的智能哨兵,每帧画面都转化为预防事故的数据护盾。
能够实现上述效果,倍特威视依托于武汉人工智能计算中心云端算力,离不开昇腾AI硬件强大的算力以及昇思MindSpore AI框架的支撑和稳定运行。通过结合MindIE推理引擎,倍特威视安全生产大模型系统在昇腾硬件上实现了高效且稳定地运行。这一结合使得大模型能够充分利用昇腾的强大算力,为工业安全生产作业中的复杂计算任务提供有力支持。尤其是在面对工业场景隐患排查任务时,即使模型输入的prompt长度达到上万,昇腾配合MindIE推理引擎仍能保持出色的性能表现,确保了模型的稳定性和高效性。
未来, 倍特威视将持续携手昇腾与昇思,加速安全生产解决方案的进一步智能化升级,为人身、财产安全保驾护航。