一、思路
1.准备数据
2.模型的构建
3.训练
4.模型的保存
5.模型的评估
二、MNist数据的处理api
1.torchvision.transforms.ToTensor()
1) 把一个取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W]
2) 其中(H,W,C)意思为(高,宽,通道数),黑白图片的通道数只有1,其中每个像素点的取值为[0,255],彩色图片的通道数为(R,G,B),每个通道的每个像素点的取值为[0,255],三个通道的颜色相互叠加,形成了各种颜色
3) transforms.ToTensor对象中有_call_方法,所以可以对其示例能够传入数据获取结果
2.torchvision.transform.Normalize(mean,std)
1) 给定均值:mean,shape和图片的通道数相同(指的是每个通道的均值),方差:std,和图片的通道数相同(指的是每个通道的方差),将会把Tensor
规范化处理。
3.torchvision.tranasforms.Compose(transforms)
1)传入list
2)数据经过list中的每一个方法挨个进行处理
三、模型的构建
1.激活函数使用
1)import torch.nnn.functional as F
2)x=F.relu(x)
2.每层数据形状
3.交叉熵损失