手写数字识别

一、思路

1.准备数据

2.模型的构建

3.训练

4.模型的保存

5.模型的评估

二、MNist数据的处理api

1.torchvision.transforms.ToTensor()

1) 把一个取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W]

2) 其中(H,W,C)意思为(高,宽,通道数),黑白图片的通道数只有1,其中每个像素点的取值为[0,255],彩色图片的通道数为(R,G,B),每个通道的每个像素点的取值为[0,255],三个通道的颜色相互叠加,形成了各种颜色
3) transforms.ToTensor对象中有_call_方法,所以可以对其示例能够传入数据获取结果

 

 

2.torchvision.transform.Normalize(mean,std)

1) 给定均值:mean,shape和图片的通道数相同(指的是每个通道的均值),方差:std,和图片的通道数相同(指的是每个通道的方差),将会把Tensor规范化处理。

 

 

3.torchvision.tranasforms.Compose(transforms)

1)传入list

2)数据经过list中的每一个方法挨个进行处理

三、模型的构建

1.激活函数使用

1)import torch.nnn.functional as F

2)x=F.relu(x)

2.每层数据形状

3.交叉熵损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值