CCFCSP201512-2消除类游戏

题目
http://118.190.20.162/view.page?gpid=T36

问题描述
  消除类游戏是深受大众欢迎的一种游戏,游戏在一个包含有n行m列的游戏棋盘上进行,棋盘的每一行每一列的方格上放着一个有颜色的棋子,当一行或一列上有连续三个或更多的相同颜色的棋子时,这些棋子都被消除。当有多处可以被消除时,这些地方的棋子将同时被消除。
  现在给你一个n行m列的棋盘,棋盘中的每一个方格上有一个棋子,请给出经过一次消除后的棋盘。
  请注意:一个棋子可能在某一行和某一列同时被消除。
输入格式
  输入的第一行包含两个整数n, m,用空格分隔,分别表示棋盘的行数和列数。
  接下来n行,每行m个整数,用空格分隔,分别表示每一个方格中的棋子的颜色。颜色使用1至9编号。
输出格式
  输出n行,每行m个整数,相邻的整数之间使用一个空格分隔,表示经过一次消除后的棋盘。如果一个方格中的棋子被消除,则对应的方格输出0,否则输出棋子的颜色编号。
样例输入
4 5
2 2 3 1 2
3 4 5 1 4
2 3 2 1 3
2 2 2 4 4
样例输出
2 2 3 0 2
3 4 5 0 4
2 3 2 0 3
0 0 0 4 4
样例说明
  棋盘中第4列的1和第4行的2可以被消除,其他的方格中的棋子均保留。
样例输入
4 5
2 2 3 1 2
3 1 1 1 1
2 3 2 1 3
2 2 3 3 3
样例输出
2 2 3 0 2
3 0 0 0 0
2 3 2 0 3
2 2 0 0 0
样例说明
  棋盘中所有的1以及最后一行的3可以被同时消除,其他的方格中的棋子均保留。
评测用例规模与约定
  所有的评测用例满足:1 ≤ n, m ≤ 30。

/*
http://118.190.20.162/view.page?gpid=T36
*/
#include <iostream>
using namespace std;
int main()
{
    int n,m;
    cin>>n>>m;
    int chess[n][m];
    int flag[n][m];
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            cin>>chess[i][j];
            flag[i][j] = 0;
        }
    }
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m - 2; j++)
        {
            if(chess[i][j] == chess[i][j+1] && chess[i][j+1] == chess[i][j+2])
            {
                flag[i][j] = flag[i][j+1] = flag[i][j+2] = 1;
            }
        }
    }
    for(int i = 0; i < n - 2; i++)
    {
        for(int j = 0; j < m; j++)
        {
            if(chess[i][j] == chess[i+1][j] && chess[i+1][j] == chess[i+2][j])
            {
                flag[i][j] = flag[i+1][j] = flag[i+2][j] = 1;
            }
        }
    }
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            if(flag[i][j] == 1)
            {
                chess[i][j] = 0;
            }
        }
    }
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            cout<<chess[i][j]<<" ";
        }
        cout<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值