题目
http://118.190.20.162/view.page?gpid=T3
问题描述
在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3。
请找出能放在给定直方图里面积最大的矩形,它的边要与坐标轴平行。对于上面给出的例子,最大矩形如下图所示的阴影部分,面积是10。
输入格式
第一行包含一个整数n,即矩形的数量(1 ≤ n ≤ 1000)。
第二行包含n 个整数h1, h2, … , hn,相邻的数之间由空格分隔。(1 ≤ hi ≤ 10000)。hi是第i个矩形的高度。
输出格式
输出一行,包含一个整数,即给定直方图内的最大矩形的面积。
样例输入
6
3 1 6 5 2 3
样例输出
10
/*
http://118.190.20.162/view.page?gpid=T3
*/
#include <iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int num[n];
for(int i = 0; i < n; i++)
{
cin>>num[i];
}
int ans = -1;
for(int i = 0; i < n; i++)
{
int low = num[i];
for(int j = i; j < n; j++)
{
if(low > num[j])
{
low = num[j];
}
int temp = (j - i + 1) * low;
if(temp > ans)
{
ans = temp;
}
}
}
cout<<ans<<endl;
return 0;
}
/*
从第i个矩形开始向后遍历
遍历到第j个矩形,找到从i到j中最小的值(高度) * (j-i+1)(宽度)
如果这个面积比ans大就存入这个面积
时间复杂度为O(n2)
*/