剩余类环和剩余类域

一、环

满足以下三个特征的数的集合:

1.有加法和乘法,满足交换律和分配律
2.有唯一的0元素和1元素,所有数加上0或乘上1保持不变。
3.任何元素n都有相反元素,使得n+(-n)=0

二、剩余类环

m个剩余类(模m)构成的环,称为模m剩余类环,记作Z/m,m>1
(剩余类:和一个固定整数a(模m)同余的所有整数的集合,如a-2m , a-m , a,a+m , a+2m)

三、域

1.有加法和乘法,满足交换律和分配律
2.有唯一的0元素和1元素,所有数加上0或乘上1保持不变。
3.任何元素n都有相反元素,使得n+(-n)=0
4.所有非零元素n都有逆元素n-1,使得n*n-1=1

四、

当m是素数的时候剩余类环Z/m是剩余类域
证明:(证明任意非零元都有逆元素)
任取剩余类a,已知gcd(a,m)=1
是否存在a*x=1 (mod m)?
因为ax-my=1,根据扩展欧几里得算法,有整数解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值