第二节 二重积分的计算
一.平面区域的表示——其实就是线性规划
平 面 区 域 的 表 示 { X 型 区 域 Y 型 区 域 平面区域的表示 \left\{ \begin{matrix} X型区域\\ Y型区域 \end{matrix} \right. 平面区域的表示{X型区域Y型区域
1.X区域
D区域可以表示为
{
a
≤
x
≤
b
ϕ
1
(
x
)
≤
y
≤
ϕ
2
(
x
)
\left\{ \begin{matrix} a\leq x \leq b\\ \phi_1(x) \leq y \leq \phi_2(x) \end{matrix} \right.
{a≤x≤bϕ1(x)≤y≤ϕ2(x)
2.Y区域
D区域可以表示为:
{
a
≤
y
≤
b
ψ
1
(
y
)
≤
x
≤
ψ
2
(
y
)
\left\{ \begin{matrix} a\leq y \leq b\\ \psi_1(y) \leq x \leq \psi_2(y) \end{matrix} \right.
{a≤y≤bψ1(y)≤x≤ψ2(y)
注意:
(1)有些时候,我们会犯一个错误,eg:我错误将上面的区域表示成了——
{
a
≤
x
≤
b
A
≤
y
≤
B
\left\{ \begin{matrix} a\leq x \leq b\\ A\leq y \leq B \end{matrix} \right.
{a≤x≤bA≤y≤B
其中,A、B是常数,那么既然我们已经知道了x、y型区域的本质就是线性规划,那么就想一想:
我这个不等式组能不能把我的目的范围给“框住“(把这个作为判断依据),显然上面的错误表达式表示的是一个矩形区域,显然错误。
**(2)**对于不同的区域,对于x、y区域的选择使用十分重要,eg:半圆
**(3)**对于某些复杂区域,我们则需要混合使用x、y——先分割成x、y区域,再逐个表示。
二.利用直角坐标系计算二重积分——截面法
假设有一个曲顶柱体V,我们为了求得其面积,可以有如下思路:
先让x等于一个确定的值,然后z就相当于一个关于y的一元函数,让其在y坐标上进行积分,最后化出来的新的z是一个关于x的的一元函数,可以理解为V被x=x_0所截出来的面积关于x的函数。最后,让这个函数在x上求积分即可求出我们的V。
具体实现
已知底面区域:
{
a
≤
x
≤
b
ψ
1
(
x
)
≤
y
≤
ψ
2
(
x
)
\left\{ \begin{matrix} a\leq x \leq b\\ \psi_1(x)\leq y \leq \psi_2(x) \end{matrix} \right.
{a≤x≤bψ1(x)≤y≤ψ2(x)
那么,令:
x
=
x
0
x=x_0
x=x0
所以在取得的截面中:
S
(
x
)
=
∫
ψ
1
(
x
0
)
ψ
2
(
x
0
)
f
(
x
0
,
y
)
d
y
S(x) =\int_{\psi_1(x_0)}^{\psi_2(x_0)}f(x_0,y)dy
S(x)=∫ψ1(x0)ψ2(x0)f(x0,y)dy
最后对x进行积分:
V
=
∬
D
f
(
x
,
y
)
d
σ
=
∫
a
b
S
(
x
)
d
x
=
∫
a
b
[
∫
ψ
1
(
x
)
ψ
2
(
x
)
f
(
x
,
y
)
d
y
]
d
x
=
∫
a
b
d
x
∫
ψ
1
(
x
)
ψ
2
(
x
)
f
(
x
,
y
)
d
y
V=\iint_Df(x,y)d\sigma = \int_a^bS(x)dx=\int_a^b[\int_{\psi_1(x)}^{\psi_2(x)}f(x,y)dy]dx=\int_a^bdx\int_{\psi_1(x)}^{\psi_2(x)}f(x,y)dy
V=∬Df(x,y)dσ=∫abS(x)dx=∫ab[∫ψ1(x)ψ2(x)f(x,y)dy]dx=∫abdx∫ψ1(x)ψ2(x)f(x,y)dy
三.利用极坐标计算二重积分
引入:极坐标面积元素微分形式ds
(归根到底还是无限分割取极限)
极 坐 标 中 的 面 积 用 ρ 和 r 表 示 比 较 容 易 , 所 以 我 们 需 要 研 究 面 积 元 素 与 d r 与 d ρ 的 关 系 极坐标中的面积用\rho和r表示比较容易,所以我们需要研究面积元素与dr与d\rho的关系 极坐标中的面积用ρ和r表示比较容易,所以我们需要研究面积元素与dr与dρ的关系
Δ σ = 1 2 ( ρ + Δ ρ ) 2 Δ θ − 1 2 ρ 2 Δ θ = ρ Δ ρ Δ θ + 1 2 ( Δ ρ ) 2 Δ θ ≈ ρ Δ ρ Δ θ ( ) \Delta \sigma = \frac{1}{2}(\rho+\Delta \rho)^2\Delta\theta-\frac{1}{2}\rho^2\Delta\theta\\=\rho\Delta\rho\Delta\theta+\frac{1}{2}(\Delta\rho)^2\Delta\theta\\ \approx\rho\Delta\rho\Delta\theta()\quad\quad\quad\quad\quad Δσ=21(ρ+Δρ)2Δθ−21ρ2Δθ=ρΔρΔθ+21(Δρ)2Δθ≈ρΔρΔθ()
所以可以得到面积元素:
d
σ
=
ρ
d
ρ
d
θ
d\sigma=\rho d\rho d\theta
dσ=ρdρdθ
1.极坐标下的二重积分:
f ( x , y ) = f ( ρ c o s θ , ρ sin θ ) ∬ D f ( x , y ) d σ = ∬ D f ( ρ c o s θ , ρ s i n θ ) ρ d ρ σ f(x,y)=f(\rho cos\theta,\rho\sin\theta)\\ \iint_Df(x,y)d\sigma=\iint_Df(\rho cos\theta,\rho sin\theta)\rho d\rho\sigma f(x,y)=f(ρcosθ,ρsinθ)∬Df(x,y)dσ=∬Df(ρcosθ,ρsinθ)ρdρσ
2.注意事项:
(1)面积元素中的一个\rho:
d
σ
=
ρ
d
ρ
d
θ
d\sigma=\color{red}\rho \color{black} d\rho d\theta
dσ=ρdρdθ
经常会被忘记
(2)我们在**”框“范围的时候**,一定要注意从原点出发,沿着一条射线出发观察,不能受到直角坐标系的影响。
四.补充——求多个柱体围成的区域体积
分为如下几个部分走:
1.画草图;
2.找投影;
3.定区域;
4.列出表达式并计算(一般都是**”什么减去什么的形式“**)