第十章 第二节二重积分的计算(同济版)

本文详细介绍了二重积分的计算方法,包括平面区域的表示,利用直角坐标系的截面法求解二重积分,以及通过极坐标转换计算二重积分。强调了选择合适区域表示的重要性,并提供了多个柱体体积计算的步骤。同时,指出了在使用极坐标时应注意的面积元素和范围设定问题。
摘要由CSDN通过智能技术生成

第二节 二重积分的计算

一.平面区域的表示——其实就是线性规划

平 面 区 域 的 表 示 { X 型 区 域 Y 型 区 域 平面区域的表示 \left\{ \begin{matrix} X型区域\\ Y型区域 \end{matrix} \right. {XY

1.X区域

在这里插入图片描述

D区域可以表示为
{ a ≤ x ≤ b ϕ 1 ( x ) ≤ y ≤ ϕ 2 ( x ) \left\{ \begin{matrix} a\leq x \leq b\\ \phi_1(x) \leq y \leq \phi_2(x) \end{matrix} \right. {axbϕ1(x)yϕ2(x)

2.Y区域

在这里插入图片描述

D区域可以表示为:
{ a ≤ y ≤ b ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ) \left\{ \begin{matrix} a\leq y \leq b\\ \psi_1(y) \leq x \leq \psi_2(y) \end{matrix} \right. {aybψ1(y)xψ2(y)

注意:

(1)有些时候,我们会犯一个错误,eg:我错误将上面的区域表示成了——
{ a ≤ x ≤ b A ≤ y ≤ B \left\{ \begin{matrix} a\leq x \leq b\\ A\leq y \leq B \end{matrix} \right. {axbAyB
其中,A、B是常数,那么既然我们已经知道了x、y型区域的本质就是
线性规划
,那么就想一想:

我这个不等式组能不能把我的目的范围给“框住“(把这个作为判断依据),显然上面的错误表达式表示的是一个矩形区域,显然错误。

**(2)**对于不同的区域,对于x、y区域的选择使用十分重要,eg:半圆

**(3)**对于某些复杂区域,我们则需要混合使用x、y——先分割成x、y区域,再逐个表示。
在这里插入图片描述

二.利用直角坐标系计算二重积分——截面法

在这里插入图片描述

假设有一个曲顶柱体V,我们为了求得其面积,可以有如下思路:

​ 先让x等于一个确定的值,然后z就相当于一个关于y的一元函数,让其在y坐标上进行积分,最后化出来的新的z是一个关于x的的一元函数,可以理解为V被x=x_0所截出来的面积关于x的函数。最后,让这个函数在x上求积分即可求出我们的V。

具体实现

已知底面区域:
{ a ≤ x ≤ b ψ 1 ( x ) ≤ y ≤ ψ 2 ( x ) \left\{ \begin{matrix} a\leq x \leq b\\ \psi_1(x)\leq y \leq \psi_2(x) \end{matrix} \right. {axbψ1(x)yψ2(x)
那么,令:
x = x 0 x=x_0 x=x0
所以在取得的截面中:
S ( x ) = ∫ ψ 1 ( x 0 ) ψ 2 ( x 0 ) f ( x 0 , y ) d y S(x) =\int_{\psi_1(x_0)}^{\psi_2(x_0)}f(x_0,y)dy S(x)=ψ1(x0)ψ2(x0)f(x0,y)dy
最后对x进行积分:
V = ∬ D f ( x , y ) d σ = ∫ a b S ( x ) d x = ∫ a b [ ∫ ψ 1 ( x ) ψ 2 ( x ) f ( x , y ) d y ] d x = ∫ a b d x ∫ ψ 1 ( x ) ψ 2 ( x ) f ( x , y ) d y V=\iint_Df(x,y)d\sigma = \int_a^bS(x)dx=\int_a^b[\int_{\psi_1(x)}^{\psi_2(x)}f(x,y)dy]dx=\int_a^bdx\int_{\psi_1(x)}^{\psi_2(x)}f(x,y)dy V=Df(x,y)dσ=abS(x)dx=ab[ψ1(x)ψ2(x)f(x,y)dy]dx=abdxψ1(x)ψ2(x)f(x,y)dy

三.利用极坐标计算二重积分

引入:极坐标面积元素微分形式ds

(归根到底还是无限分割取极限

在这里插入图片描述

极 坐 标 中 的 面 积 用 ρ 和 r 表 示 比 较 容 易 , 所 以 我 们 需 要 研 究 面 积 元 素 与 d r 与 d ρ 的 关 系 极坐标中的面积用\rho和r表示比较容易,所以我们需要研究面积元素与dr与d\rho的关系 ρrdrdρ

Δ σ = 1 2 ( ρ + Δ ρ ) 2 Δ θ − 1 2 ρ 2 Δ θ = ρ Δ ρ Δ θ + 1 2 ( Δ ρ ) 2 Δ θ ≈ ρ Δ ρ Δ θ ( ) \Delta \sigma = \frac{1}{2}(\rho+\Delta \rho)^2\Delta\theta-\frac{1}{2}\rho^2\Delta\theta\\=\rho\Delta\rho\Delta\theta+\frac{1}{2}(\Delta\rho)^2\Delta\theta\\ \approx\rho\Delta\rho\Delta\theta()\quad\quad\quad\quad\quad Δσ=21(ρ+Δρ)2Δθ21ρ2Δθ=ρΔρΔθ+21(Δρ)2ΔθρΔρΔθ()

所以可以得到面积元素:
d σ = ρ d ρ d θ d\sigma=\rho d\rho d\theta dσ=ρdρdθ

1.极坐标下的二重积分:

f ( x , y ) = f ( ρ c o s θ , ρ sin ⁡ θ ) ∬ D f ( x , y ) d σ = ∬ D f ( ρ c o s θ , ρ s i n θ ) ρ d ρ σ f(x,y)=f(\rho cos\theta,\rho\sin\theta)\\ \iint_Df(x,y)d\sigma=\iint_Df(\rho cos\theta,\rho sin\theta)\rho d\rho\sigma f(x,y)=f(ρcosθ,ρsinθ)Df(x,y)dσ=Df(ρcosθ,ρsinθ)ρdρσ

2.注意事项:

(1)面积元素中的一个\rho:
d σ = ρ d ρ d θ d\sigma=\color{red}\rho \color{black} d\rho d\theta dσ=ρdρdθ
经常会被忘记

(2)我们在**”框“范围的时候**,一定要注意从原点出发,沿着一条射线出发观察,不能受到直角坐标系的影响。

四.补充——求多个柱体围成的区域体积

分为如下几个部分走:

1.画草图;

2.找投影;

3.定区域;

4.列出表达式并计算(一般都是**”什么减去什么的形式“**)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值