Number Theory, Sets,Equivalence Relations, Functions, and Graph Theory

Objectives and Outcomes

The purpose of this assignment is to build your mathematical maturity in the areas of Number Theory, Sets, Equivalence Relations, Functions, and Graph Theory. Most questions are presented at a highly abstract level so that the consequences are very general, and can be applied in a variety of situations: not just later on in the course, but also beyond. The specific motivation for each problem can be summarised as follows:

Problem 1: This question works through a proof of Bézout’s Identity: the fact that the gcd of x and y can be written as an integer linear combination of x and y. To do this we work through an approach common throughout the course: Introducing a new definition based on known concepts; Explore that definition with some examples; Prove results about the definition.

Problem 2: This question shows how we can use Bézout’s Identity (from Q1) to find multiplicative inverses in modular arithmetic – that is, how to “divide” when working modulo y. In order to “divide” by x (when working modulo y), we can instead multiply by a number w where wx =(y) 1. We saw this with Quiz 1, T6: because 17 × 11 =(186) 1, we can solve 17y =(186) 5 by multiplying both sides by 11: 55 =(186) 11(17y) =(186) y. We also saw a similar idea in the lectures about matrices.

Problem 3: We will revisit this result again when looking at algorithmic analysis. It is particularly useful for analyzing the Faster Euclidean Algorithm covered in Week 2.

Problem 4: This question asks you to prove or disprove set equalities – specifically equalities involving languages (so the laws of set operations do not apply). This question demonstrates another common approach used in this course: requiring you to first decide whether the result is correct or not (assessing understanding) and then requiring you to justify your stance (assessing ability).

Problem 5: This question demonstrates a close connection between several different topics already covered in the course: functions, sets, and languages. This connection is more than coincidental – we will revisit it again later in the course when we cover Boolean Algebras.

Problem 6: The use of exponential notation for describing sets of functions extends beyond comparing cardinalities. This question demonstrates the set-theoretical analogue of the rule a bc = (a b ) c . This has applications in computer science as it demonstrates how functions of two inputs can be constructed from functions of just a single input. This process is known as Currying.

Problem 7: This question shows another, very useful, characterization of equivalence relations, connecting them with functions. This goes along with the characterization in terms of partitions (i.e. a connection with sets) described in lectures. Most of the examples of equivalence relations given in lectures and quizzes (e.g. Quiz 4, M1) fit this characterization; and we use the result again in Problem 8.

Problem 8: This question shows that, in certain circumstances, it is possible to “extend” addition and multiplication to equivalence classes. A variation of this result (for a different equivalence relation) establishes the facts about how addtion and multiplication interact with =n stated in lectures. This particular result shows a connection between the matrix representation of relations and the adjacency matrix of their graphical representation (the former corresponding to a matrix of equivalence classes). We will see the semiring E again when we cover Boolean Logic.

Problem 9: The aim of this question is to model a concrete (“real-world”) problem abstractly using Graph Theory. An abstract model lets us: identify the important aspects of a problem and ignore the extraneous; identify connections with other, seemingly unrelated problems; and make use of other, more general, tools and results to solve the specific problem. We will revisit this problem in Assignment 2, where we will model it with Propositional Logic.

After completing this assignment, you will: • Be able to make rigorous arguments about the foundational structures used in discrete mathematics [All problems] • Be able to create and reason about abstract models of concrete (“real-world”) problems and objects [Problem 9] • Understand several deeper connections between different topics of the course [Problems 1, 3, 5, 7, 8]

Advice on how to do the assignment Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

This should be taken as a guide only. Partial marks are available in all questions, and achievable by students of all abilities.

Specific advice on how to do this assignment

Problem 1

The main purpose of any assignment is to assess your ability and understanding. A simple way to do this is to introduce you to a novel concept based on definitions you are familiar with; ask some exploratory questions to get you familiar with the concept; and then ask you to prove some results about the new concept. In this question we do this by defining a family of sets Sx,y (i.e. one set for each pair of integers x, y); checking you are comfortable with the definition (parts (a) and (b)); and then proving results about the set which ultimately lead to Bézout’s identity (parts (c) – (f)). The aim of the question is to show that the gcd of two numbers x and y is the smallest positive number that can be written in the form mx + ny where m and n are integers (this is known as a linear combination of x and y). We do this by taking d to be the gcd and z to be the smallest positive linear combination of x and y and showing that d = z.

Important!
This question is asking you to prove Bézout’s identity based on the principles from lectures. You should not make use of Bézout’s identity in the process of the proof!

• Parts (a) and (b) are intended to get you familiar with the set Sx,y for two pairs of x, y – namely 4, 6 and 9, −15. The set S4,6 is the set

S4,6 = {4m + 6n : m, n ∈ Z}

so elements of this set are found by having m and n take various integer values.

• When giving elements of a set it is good practice to justify why the object is an element of the set. In this case brief explanations are acceptable (e.g. 0 ∈ S4,6 (when m = 0, n = 0))

• After you have found several elements of each set, see if you notice any patterns (maybe try to find a few more elements if the pattern isn’t obvious). This will help with the later parts.

• For parts (c) –(f) you should be working in the abstract - that is, you should be keeping things general and using x, y, d and z rather than specific values – with the exception of the case when z = 0. It is easiest to consider this case separately, noting that z = 0 automatically places restrictions on x, y and d.

• To show a set A is a subset of B, you need to show that every element of A is also an element of B. In this case, the set A are the elements of Sx,y and the set B is the set of integer multiples of d. So you need to prove that number that can be written in the form mx + ny where m, n ∈ Z is multiple of d. Note that you have to prove this for all m and n, not specific values. Since we are working with arbitrary values for x, y, and d, the only way to prove this is to work from the definitions (just as with the first set of formatif tasks).

• To show that d ≤ z, we note that, by definition, z ∈ Sx,y. So what does the previous result now tell us about z and d? Be careful – this doesn’t immediately give the result, you need one more observation – namely that d and z are positive. You may use the result of (c)(i), even if you haven’t proven it, to answer this question.

• Once you have a proof that z|x, the proof that z|y will likely follow in a similar way (because x and y are interchangeable in all definitions). It is acceptable to write “Similarly z|y”.

• The hint says to show that z|x you should conisder x % z. If z|x, what does that mean for x % z? Now consider the following two observations:  

– 0 ≤ (x % z) < z (from the lectures)

– z is the smallest positive element of Sx,y

So if we could show that (x % z) ∈ Sx,y what does that mean? How might we show (x % z) ∈ Sx,y? Well, as we are working in the abstract, we cannot do much with x % z other than rewrite it according to its definition.

• To show z ≤ d recall the definition of d and consider what we have shown about z in the previous question. You may use the result of (e), even if you haven’t proven it, to answer this question.

Problem 2

• In this question, be sure that you are working in the abstract – i.e. with arbitrary values for x and y rather than specific values.

• If gcd(x, y) = 1, what does Bézout’s identity say? Now consider that equation modulo y (i.e. what if we use =(y) ?) This should give you an integer w that meets the requirement wx =(y) 1, but we need the second requirement that w ∈ [0, y). Is there some operation we can apply to w to get an integer w ′ with 0 ≤ w ′ < y? (Hint: where else have we seen those bounds?). Now you should have an integer w which satisfies wx =(y) 1 and an integer w ′ , closely connected to w such that w ′ ∈ [0, y). You still need to show that w ′x =(y) 1. One way to do this is to show that w =(y) w ′ and then multiply both sides of this equation by x.

• For part (b), make use of the result of part (a) [which you may use without having proven it], and the observation made in the “Objectives and outcomes” about this question (i.e. the purpose of this question).

• To show there is at most one w meeting the requirements, assume there are two numbers, w and w ′ meeting the requirements and show that w = w ′ . To show this consider the following observation:

If y|(w − w ′ ) and − y < w − w ′ < y then w − w ′ = 0

which follows because there is only one multiple of y in the interval (−y, y), namely 0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值