Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0构成欧拉回路的条件是每个节点的度数都为偶数且不为0#include<cstdio> #include<cstring> int du[10001]; int pre[1001]; int find(int p) { while(p!=pre[p]) { p=pre[p]; } return p; } void merge(int x,int y) { int fx=find(x); int fy=find(y); if(fx!=fy) { pre[fx]=fy; } } int main() { int n,m; while(scanf("%d",&n),n) { memset(du,0,sizeof(du)); scanf("%d",&m); if(n==0&&m==0) { break; } for(int i=1;i<=n;i++) { pre[i]=i; } while(m--) { int u,v; scanf("%d%d",&u,&v); du[u]++; du[v]++; merge(u,v); } int cut=0,sum=0; for(int i=1;i<=n;i++) { if(i==pre[i]) { sum++; } if(du[i]%2==0&&du[i]!=0) { cut++; } } if(cut==n&&sum==1) printf("1\n"); else printf("0\n"); } return 0; }