1、数据管理(Data Management)是为了交付、控制、保护并提升数据和信息资产的价值,在其整个生命周期中制订计划、制度、规程和实践活动,并执行和监督的过程。
2、组织管理数据的目标包括:
1)理解并支撑企业及其利益相关方(包括客户、员工和业务合作伙伴等)的信息需求得到满足。
2)获取、存储、保护数据和确保数据资产的完整性。
3)确保数据和信息的质量。
4)确保利益相关方的数据隐私和保密性。
5)防止数据和信息未经授权或被不当访问、操作及使用。
6)确保数据能有效地服务于企业增值的目标。
3、数据管理原则
4、确保高质量的数据是数据管理的核心。
5、低质量的数据对任何组织来说都是代价高昂的。很多低质量数据的成本是隐藏的、间接的,因此很难测量。
低质量数据的成本主要来源于:
1)报废和返工。
2)解决方法和隐藏的纠正过程。
3)组织效率低下或生产力低下。
4)组织冲突。
5)工作满意度低。
6)客户不满意。
7)机会成本,包括无法创新。
8)合规成本或罚款。
9)声誉成本。
6、高质量数据的作用包括:
1)改善客户体验。
2)提高生产力。
3)降低风险。
4)快速响应商机。
5)增加收入。
6)洞察客户、产品、流程和商机,获得竞争优势。
7、数据的生命周期基于产品的生命周期,它不应该与系统开发生命周期混淆。
以下是数据生命周期中的关键活动。
8、一个组织越了解数据的生命周期和血缘(数据从起点移动到使用点的路径,也称为数据链)关系,管理数据的能力就越强。
9、数据管理对数据生命周期的关注有几个重要影响:
1)创建和使用是数据生命周期中的关键点。
2)数据质量管理必须贯穿整个数据生命周期。
3)元数据质量管理必须贯穿整个数据生命周期。
4)数据管理还包括确保数据安全,并降低与数据相关的风险。
5)数据管理工作应聚焦于关键数据。生命周期管理要求将重点放在组织关键的数据上,并将数据ROT(冗余的Redundant、过时的Obsolete、碎片化的Trivial)降到最低。
10、数据的风险在于,它可能被误解和误用。最高质量的数据带给组织最大的价值——可获得、相互关联、完整、准确、一致、及时、适用、有意义和易于理解。
11、数据管理战略的组成应包括:
1)令人信服的数据管理愿景。
2)数据管理的商业案例总结。
3)指导原则、价值观和管理观点。
4)数据管理的使命和长期目标。
5)数据管理成功的建议措施。
6)符合SMART原则(具体、可衡量、可操作、现实、有时间限制)的短期(12~24个月)数据管理计划目标。
7)对数据管理角色和组织的描述,以及对其职责和决策权的总结。
8)数据管理程序组件和初始化任务。
9)具体明确范围的优先工作计划。
10)一份包含项目和行动任务的实施路线图草案。
12、数据管理战略规划的可交付成果包括:
1)数据管理章程。包括总体愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、可识别的风险、运营模式等。
2)数据管理范围声明。包括规划目的和目标(通常为3年),以及负责实现这些目标的角色、组织和领导。
3)数据管理实施路线图。包括特定计划、项目、任务分配和交付里程碑。
13、数据管理框架
1)战略一致性模型(SAM)
抽象了各种数据管理方法的基本驱动因素,模型的中心是数据和信息之间的关系。信息通常与业务战略和数据的操作使用有关。数据与信息技术和流程相关联,这些技术和过程支持可访问数据的物理系统。围绕这一概念的是战略选择4个基本领域:业务战略、IT战略、组织和流程以及信息系统。
2)阿姆斯特丹信息模型(AIM)
与战略一致性模型一样,从战略角度看待业务和IT的一致性,共有9个单元,它抽象出了一个关注结构(包括规划和架构)和策略的中间层。此外,还要认识到信息通信的必要性(信息治理和数据质量支柱)。
3)DAMA-DMBOK框架
DAMA车轮图
DAMA车轮图定义了数据管理知识领域。它将数据治理放在数据管理活动的中心,因为治理是实现功能内部一致性和功能之间平衡所必需的。其他知识领域(数据体系结构、数据建模等)围绕车轮平衡。它们都是成熟数据管理功能的必要组成部分,但根据各组织的需求,它们可能在不同时间实现。
环境因素六边形图
环境因素六边形图显示了人、过程和技术之间的关系,是理解DMBOK语境关系图的关键。它将目标和原则放在中心,因为这些目标和原则为人们如何执行活动及有效地使用工具成功进行数据管理提供了指导。
知识领域语境关系图
知识领域语境关系图描述了知识领域的细节,包括与人员、流程和技术相关的细节。它们基于产品管理(供给者、输入、活动、交付成果和消费者)的SIPOC图的概念。语境关系图将活动放在中心,这些活动生产了满足利益相关方需求的可交付成果。
DAMA车轮图呈现的是一组知识领域的概要,六边形图展示了知识领域结构的组成部分,语境关系图显示了每个知识领域中的细节。
DMBOK金字塔
金字塔描述了一个组织如何向更好的数据管理实践发展的路径。
第1阶段:组织购买包括数据库功能的应用程序。这意味着组织以此作为数据建模、设计、数据存储和数据安全的起点。要使系统在其数据环境中运行,还需要做数据集成和交互操作方面的工作。
第2阶段:一旦组织开始使用应用程序,他们将面临数据质量方面的挑战,但获得更高质量的数据取决于可靠的元数据和一致的数据架构,他们说明了来自不同系统的数据是如何协同工作的。
第3阶段:管理数据质量、元数据和架构需要严格地实践数据治理,为数据管理活动提供体系性支持。数据治理还支持战略计划的实施,如文件和内容管理、参考数据管理、主数据管理、数据仓库和商务智能,这些黄金金字塔中的高级应用都会得到充分的支持。
第4阶段:该组织充分利用了良好管理数据的好处,并提高了其分析能力。
DAMA功能领域依赖关系图
商务智能和分析功能直接依赖于主数据和数据仓库解决方案,但反过来,它们又依赖输入信息的系统和应用。可靠的数据质量、数据设计和数据交互操作实践是可靠系统和应用的基础。此外,该模型中的数据治理包括元数据管理、数据安全、数据架构和参考数据管理,这些提供了所有其他功能依赖的基础。
DAMA数据管理功能框架
该框架从数据管理的指导目标开始:使组织能够像从其他资产中获取价值那样,从其数据资产中获取价值。派生价值需要生命周期管理,因此与数据生命周期相关的数据管理功能在图的中心进行了描述。这包括:为可靠、高质量的数据进行规划和设计;建立过程和功能来使用和维护数据;在各种类型的分析活动以及这些过程中使用数据,以提高其价值。
DAMA车轮图演变
数据治理范围内的应用活动围绕着数据管理生命周期内的各项核心活动进行。
学习图书:《DAMA数据管理知识体系指南(原书第2版)》[美]DAMA国际 著