1.3 数据管理框架
有战略一致性模型、阿姆斯特丹信息模型、DAMA-DMBOK框架DAMA车轮图、DAMA-DMBOK框架环境因素六边形图、DAMA-DMBOK框架知识领域语境关系图五种模型。
- 前两个模型,即战略一致性模型和阿姆斯特丹(Amsterdam)信息模型,展示了组织管理数据的高阶关系。
- DAMA-DMBOK框架(DAMA车轮图、六边形图和语境关系图)描述了由DAMA定义的数据管理知识领域,并解释了它们在DMBOK中的视觉表现。
1.3.1 战略一致性模型
战略一致性模型(Stategic Alignment Model,SAM)抽象了各种数据管理方法的基本驱动因素,模型的中心是数据和信息之间的关系。信息通常与业务战略和数据的操作使用相关。数据与信息技术和流程相关联,这些技术和过程支持可访问数据的物理系统。
围绕这一概念的是战略选择的4个基本领域:业务战略、IT战略、组织和流程以及信息系统。
1.3.2 阿姆斯特丹信息模型
阿姆斯特丹信息模型(The Amsterdam Information Model,AIM)与战略一致性模型一样,从战略角度看待业务和IT的一致性,共有9个单元,它抽象出一个关注结构(包括规划和架构)和策略的中间层。
SAM(战略一致性模型)和AIM(阿姆斯特丹信息模型)框架从横轴(业务/IT战略)和纵轴(业务战略/业务运营)两个维度详细描述组件之间的关系。
1.3.3 DAMA-DMBOK框架
1)DAMA车轮图
DAMA 车轮图定义了数据管理知识领域。它将数据治理放在数据管理活动的中心,因为治理是实现功能内部一致性和功能之间平衡所必需的。其他知识领域(数据体系结构、数据建模等)围绕车轮平衡。它们都是成熟数据管理功能的必要组成部分,但根据各组织的需求,它们可能在不同的时间实现。
2)环境因素六边形图
环境因素六边形图显示了人、过程和技术之间的关系,是理解DMBOK语境关系图的关键。它将目标和原则放在中心,因为这些目标和原则为人们如何执行活动及有效地使用工具成功进行数据管理提供了指导。
3)知识领域语境关系图
描述了知识领域的细节,包括与人员、流程和技术相关的细节它们基于产品管理(供给者、输入、活动、交付成果和消费者)的SIPOC图的概念。每个语境关系图都以知识领域的定义和目标开始。目标驱动的活动分为4个阶段:计划(P)控制(C)、开发(D)和运营(0)。
组成部分包括12个部分,需要记住:
- 定义。
- 目标。
- 活动:①计划活动(P)。②控制活动(C)。③开发活动(D)。④运营活动(0)。
- 输人。
- 交付成果。
- 角色和职责。
- 供给者。负责提供或允许访问活动输人的人员。
- 消费者。直接受益于数据管理活动产生主要交付成果的消费方。
- 参与者。执行、管理或批准知识领域活动的人员。
- 工具。它是实现知识领域目标的应用程序和其他技术。
- 方法。它是用于在知识领域内执行活动和产生可交付成果的方法和程序。它还包括共同约定、最佳实践建议、标准和协议以及新出现的一些合适的替代方法。
- 度量指标。它是衡量或评估绩效、进度、质量、效率或其他影响的标准。这些指标用于定义每个知识领域内完成工作的可量化事实。
1.3.4 DMBOK金字塔
彼得·艾肯(PeterAiken)的框架中使用DMBOK知识领域来描述许多组织演化的情况。使用此框架,组织可定义一种演化路径,达到拥有可靠的数据和流程的状态,支持战略业务目标的实现。为了实现这一目标,许多组织都经历了类似的逻辑步骤。
1.3.5 DAMA数据管理框架的进化
该框架从数据管理的指导目标开始:使组织能够像从其他资产中获取价值那样,从其数据资产中获取价值。
与数据生命周期相关的数据管理功能在图的中心进行了描述。这包括:为可靠、高质量的数据进行规划和设计;建立过程和功能来使用和维护数据:在各种类型的分析活动以及这些过程中使用数据,以提高其价值。
DAMA 数据管理框架也被描述为另一种形式的DAMA车轮图,数据治理范围内的应用活动围绕着数据管理生命周期内的各项核心活动进行。
核心活动位于框架中心,包括元数据管理、数据质量管理和数据结构定义(架构)。生命周期管理活动可以从多个方面定义,如计划的角度(风险管理、建模、数据设计、参考数据管理),实现的角度(数据仓库、主数据管理、数据存储和操作、数据集成和互操作、数据开发技术)。
生命周期管理活动源于数据的使用:主数据使用、文件和内容管理、商务智能、数据科学、预测分析、数据可视化。
1.4 DAMA和DMBOK
1)数据治理(Data Govermance)
通过建立一个能够满足企业需求的数据决策体系,为数据管理提供指导和监督(参见第3章)。
2)数据架构(Data Architecture)
定义了与组织战略协调的管理数据资产蓝图,以建立战略性数据需求及满足需求的总体设计(参见第4章)。
3)数据建模和设计(Data Modeling and Design)
以数据模型(Data Model)的精确形式,进行发现、分析、展示和沟通数据需求(参见第5章)。
4)数据存储和操作(Data Storage and Operations)
以数据价值最大化为目标,包括存储数据的设计、实现和支持活动以及在整个数据生命周期从计划到销毁的各种操作活动(参见第6章)。
5)数据安全(Data Security)
确保数据隐私和机密性得到维护,数据不被破坏,数据被适当访问(参见第7章)。
6)数据集成和互操作(DataIntegration and Interoperability)
包括与数据存储、应用程序和组织之间的数据移动和整合相关的过程(参见第8章)。
7)文件和内容管理(Documentand Content Management)
用于管理非结构化媒体数据和信息的生命周期过程,包括计划、实施和控制活动,尤其是指支持法律法规遵从性要求所需的文档(参见第9章)。
8)参考数据和主数据(Reference and Master Data)
包括核心共享数据的持续协调和维护,使关键业务实体的真实信息以准确、及时和相关联的方式在各系统间得到一致使用(参见第10章)。
9)数据仓库和商务智能(DataWarehousing and Business Intelligence)
包括计划、实施和控制流程来管理决策支持数据,并使知识工作者通过分析报告从数据中获得介值(参见第11章)。
10)元数据(Metadata)
包含规划、实施和控制活动,以便能够访问高质量的集成元数据,包括定义、模型、数据流和其他至关重要的信息(对理解数据及其创建、维护和访问系统有帮助)(参见第12章)。
11)数据质量(Data Quality)
包括规划和实施质量管理技术,以测量、评估和提高数据在组织内的适用性(参见第13章)。
除了有关知识领域的章节外,DAMA-DMBOK2还包含以下主题的章节:
1)数据处理伦理(DataHandling Ethics)。描述了关于数据及其应用过程中,数据伦理规范在促进信息透明、社会责任决策中的核心作用。数据采集、分析和使用过程中的伦理意识对所有数据管理专业人员有指导作用(参见第2章)。
2)大数据和数据科学(BigData and Data Science)。描述了针对大型的、多样化数据集收集和分析能力的提高而出现的技术和业务流程(参见第14章)。
3)数据管理成熟度评估(DataManagement Maturity Assessment)。概述了评估和改进组织数据管理能力的方法(参见第15章)。
4)数据管理组织和角色期望(DataManagement Organization and Role Expectations)。为组建数据管理团队、实现成功的数据管理活动提供了实践指导和参考(参见第16章)。
5)数据管理和组织变革管理(DataManagement and Organizational Change Management)。描述了如何计划和成功地推动企业文化变革。文化的变革是将数据管理实践有效地嵌入组织中的必然结果(参见第17章)。