python WordNet的使用方法(整理版)

那个,网上的不少相关内容的整理真的是难懂,而且不少错误,稍稍整理一下。
注:真是百度5小时,谷歌5分钟……整理了这么多中文资料,都缺的厉害,然后谷歌了一下,就发现了一个很不错的材料,后面也整理一下。


python版本:Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32
numpy版本:1.11.2
nltk版本:nltk 3.3
调试环境:Python 3.6.4 Shell


1、在代码中引入wordnet包

>>>from nltk.corpus import wordnet as wn

2、查询一个词所在的所有词集(synsets)

>>>wn.synsets('dog')
[Synset('dog.n.01'), Synset('frump.n.01'), 
Synset('frank.n.02'), Synset('pawl.n.01'<
### 回答1: 基于Python的知识自动问答系统需要应用多个知识点来实现。首先,需要进行自然语言处理(NLP),这是一个涉及自然语言理解(语法和语义分析)、自然语言生成以及文本处理的课题。其次,需要使用机器学习技术来训练和提高问答系统的准确性和可靠性。这包括分类、聚类、文本分类、情感分析等技术。同时需要使用数据挖掘技术来提取和分析相关问答数据集,以加强系统的智能性和预测性。此外还需要掌握知识图谱(Knowledge Graph)技术和语义网(Semantic Web)技术。知识图谱是知识库的一种扩展,它是一种能够描述现实世界中各个实体以及它们之间的关系的数据库(通常是图形数据库)。而语义网则是一种描述、组织和实现互联网信息的技术。在技术实现上,还需要掌握Python语言基础和基本编程思想、Web开发技术和相关框架(如Django、Flask等),以及算法和数据结构基础。最后,在知识自动问答系统的应用场景方面,需要了解系统用户的需求(包括输入方式、输出方式、应用场景等),以及目标领域或行业的知识体系和规则。 ### 回答2: 基于Python的知识自动问答系统主要涉及以下几个知识点: 1.自然语言处理:自然语言处理是技术支持自动问答系统的基础,包括语言分析、语义理解、词性标注等技术,Python中常用的自然语言处理库包括NLTK,jieba等。 2.问答匹配算法:问答匹配算法是自动问答系统的核心,主要通过对问题和答案的特征进行提取和匹配,将问题和答案进行匹配。常用的问答匹配算法包括关键词匹配、语义匹配、机器学习等。Python中常用的问答匹配算法工具包括Scikit-learn、TensorFlow等。 3.语义知识库:语义知识库是自动问答系统的重要组成部分,可以帮助系统理解语言表达的含义。常见的语义知识库包括WordNet、ConceptNet、OpenIE等。Python中可以使用相应的库来操纵这些语义知识库。 4.数据挖掘:数据挖掘是在可用数据中抽取出有价值的信息的过程。在自动问答系统中,数据挖掘可以用来提取和整理问题和答案数据集以及对问题和答案进行处理和分析。Python中常用的数据挖掘工具包括Pandas、NumPy等。 总之,基于Python的知识自动问答系统需要涉及自然语言处理、问答匹配算法、语义知识库以及数据挖掘等多个知识点,只有在这些知识点的基础上,系统才能准确地理解和回答用户提出的问题。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值