电子元器件散热方法布局措施

电子元器件散热方法布局措施

http://www.cnaok.com/news/420.shtml

1.元器件布局减小热阻的措施:
(1)元器件安装在最佳自然散热的位置上;
(2)元器件热流通道要短、横截面要大和通道中无绝热或隔热物;
(3)发热元件分散安装;

2.元器件排放减少热影响:
(1)有通风口的机箱内部,电路安装应服从空气流动方向:进风口→放大电路→逻辑电路→敏感电路→集成电路→小功率电阻电路→有发热元件电路→出风口,构成良好散热通道;
(2)发热元器件要在机箱上方,热敏感元器件在机箱下方,利用机箱金属壳体作散热装置。

3.合理布局准则:
(1)将发热量大的元件安装在条件好的地方,如靠近通风孔;
(2)将热敏元件安装在热源下面。零件安装方向横向面与风向平行,利于热对流。
(3)在自然对流中,热流通道尽可能短,横截面积应尽量大;
(4)冷却气流流速不大时,元件按叉排方式排列,提高气流紊流程度、增加散热效果;
(5)发热元件不安装在机壳上时,与机壳之间的距离应>35~40cm

4.冷却内部部件的空气进口须加过滤装置,且不必拆开机壳即可更换或清洗。

5.设计上避免器件工作热环境的稳定性,以减轻热循环与冲击而引起的温度应力变化。温度变化率不超过1℃/min,温度变化范围不超过20℃,此指标要求可根据产品不同由厂家自行调整。
6.元器件的冷却剂及冷却方法应与所选冷却系统及元件相适应,不会因此产生化学反应或电解腐蚀。

7.冷却系统的电功率一般为所需冷却热功率的3%一6%;

8.冷却时,气流中含有水分,温差过大,会产生凝露或附着,防止水份及其它污染物等导致电气短路、电气间隙减小或发生腐蚀。
措施:
a)冷却前后温差不要过大;
b)温差过大会产生凝露的部位,水分不会造成堵塞或积水,如果有积水,积水部位的材料不会发生腐蚀;
c)对裸露的导电金属加热缩套管或其他遮挡绝缘措施;

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值