110.平衡二叉树
- 标签:二叉树、递归
- 难度:6.5
二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
public boolean isBalanced(TreeNode root) {
return getDepth(root) == -1 ? false : true;
}
// 递归函数:后序遍历,返回结点root的高度
public int getDepth(TreeNode root){
if(root == null){
return 0;
}
// 求左节点的高度,如果左节点高度为-1,那直接返回-1
int leftDepth = getDepth(root.left);
if(leftDepth == -1) return -1;
// 求右节点的高度,如果右节点高度为-1,那直接返回-1
int rightDepth = getDepth(root.right);
if(rightDepth == -1) return -1;
// 求root结点的高度,如果左右高度差大于1,则返回-1
if(Math.abs(leftDepth - rightDepth)>1){
return -1;
// 否则返回左右较大的高度+1
}else{
return Math.max(leftDepth, rightDepth) + 1;
}
}
257.二叉树的所有路径
- 标签:二叉树、递归、回溯
- 难度:7.0
第一次正式接触回溯。
回溯可以用于这种找路径的问题。
public List<String> binaryTreePaths(TreeNode root) {
// 保存所有的路径
List<String> res = new ArrayList<>();
if(root == null) return res;
// 用于加入当前结点
List<TreeNode> path = new ArrayList<>();
// 递归函数,不断更新path和res
traversal(root,path,res);
return res;
}
public void traversal(TreeNode cur, List<TreeNode> path, List<String> res){
// 前序遍历,先处理当前结点,加入路径
path.add(cur);
// 如果当前结点是叶子,把path里面的所有结点拼起来,加入结果集
if(cur.left == null && cur.right == null){
StringBuilder sb = new StringBuilder();
for(int i = 0; i < path.size()-1; i++){
sb.append(String.valueOf(path.get(i).val)).append("->");
}
sb.append(String.valueOf(path.get(path.size()-1).val));
res.add(sb.toString());
return;
}
// 往左走
if(cur.left != null){
traversal(cur.left,path,res);
// 回溯:走出去一步后,因为还要往右走,所以要在path里删掉左节点
path.remove(path.size()-1);
}
//往右走
if(cur.right != null){
traversal(cur.right,path,res);
// 回溯
path.remove(path.size()-1);
}
}
404.左叶子之和
- 标签:二叉树、递归、迭代
- 难度:6.5
一个结点是叶子结点,且是某结点的左结点,那么就管他叫左叶子。
实际的判断条件要通过他的父结点写,即:
t.left != null && t.left.left == null && t.left.right == null
方法一:递归(重要)
// 方法一:递归
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) return 0;
int leftValue = sumOfLeftLeaves(root.left); // 左
int rightValue = sumOfLeftLeaves(root.right); // 右
// 核心:判断左结点是不是左孩子
if (root.left != null && root.left.left == null && root.left.right == null) {
leftValue = root.left.val;
}
int sum = leftValue + rightValue; // 中
return sum;
}
方法二:迭代
比较简单,在前序遍历的基础上,简单修改当前结点的处理条件
// 方法二:迭代
public int sumOfLeftLeaves(TreeNode root) {
int res = 0;
if(root == null) return res;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode t = stack.pop();
// 简单修改当前结点的处理条件:是左叶子就加入res
if(t.left != null && t.left.left == null && t.left.right == null){
res += t.left.val;
}
if(t.right != null){
stack.push(t.right);
}
if(t.left != null){
stack.push(t.left);
}
}
return res;
}