前言
刷题笔记(牛客网)
一、NC67 汉诺塔问题
描述
我们有由底至上为从大到小放置的 个圆盘,和三个柱子(分别为左/中/右),开始时所有圆盘都放在左边的柱子上,按照汉诺塔游戏的要求我们要把所有的圆盘都移到右边的柱子上,要求一次只能移动一个圆盘,而且大的圆盘不可以放到小的上面。
请实现一个函数打印最优移动轨迹。
给定一个 int n
,表示有 个圆盘。请返回一个 string
数组,其中的元素依次为每次移动的描述。描述格式为: move from [left/mid/right] to [left/mid/right]
。
数据范围 1\le n \le 181≤n≤18
示例1 输入: 2 返回值: [“move from left to mid”,“move from left to
right”,“move from mid to right”]
C++版
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
/*
此方法可以运用main函数输出,后者不可以;同时,此方法无法通过运行
class Solution {
public:
vector<string> ans;
void move(string a, string b)
{
cout << "move from " << a << " to " << b << endl;
}
void hanoi(int n, string left, string mid, string right)
{
if (n < 1) return;
else
{
hanoi(n - 1, left, right, mid);
move(left, right);
hanoi(n - 1, mid, left, right);
}
}
vector<string> getSolution(int n) {
// write code here
hanoi(n, "left", "mid", "right");
return ans;
}
};*/
class Solution {
public:
void hanoi(int n, string left, string mid, string right, vector<string>& ans)
{
if (n == 0) return;
else
{
hanoi(n - 1, left, right, mid, ans);
string m = "move from " + left + " to " + right;
ans.push_back(m);
hanoi(n - 1, mid, left, right, ans);
}
}
vector<string> getSolution(int n) {
// write code here
vector<string> ans;
hanoi(n, "left", "mid", "right", ans);
return ans;
}
};
int main()
{
int n;
cin >> n;
Solution solution;
solution.getSolution(n);
system("pause");
return 0;
}
总结
这个问题也是可以使用递归直接解决的,通过这个问题我发现了自己对于vector的用法了解的还不够…