poj3311 Hie with the Pie

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Kirito_Acmer/article/details/46592605

Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input

3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0

Sample Output

8

题意:给你n+1个点以及任意两个点之前的距离(不经过其他点),你现在在0这个点,让你走最短的路程走完n个点并回到0这个点,不同的点可以重复走。

思路:因为点可以走任意多次,所以我们先初始化出任意两个点之间的最短距离,因为范围小,用floyd就行了。然后我们用dp[state][i]表示当前走完点的状态为state,当前正在i这个点所要走的最短距离。状态转移方程为dp[state][i]=min(dp[state][i],dp[state1][j]+dist[j][i] );写的时候有两种写法,一种是使得state为已经求出的状态,推state|(1<<(j-1)),还有一种是state为待求状态,state由state1=state^(1<<(j-1))得到。


写法一:顺推

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 15
int dist[maxn][maxn],dp[1<<maxn][maxn];

int main()
{
    int n,m,i,j,T,state,k,state1;
    while(scanf("%d",&n)!=EOF && n!=0)
    {
        for(i=0;i<=n;i++){
            for(j=0;j<=n;j++){
                scanf("%d",&dist[i][j]);
            }
        }
        for(k=0;k<=n;k++){
            for(i=0;i<=n;i++){
                for(j=0;j<=n;j++){
                    if(dist[i][j]>dist[i][k]+dist[k][j]){
                        dist[i][j]=dist[i][k]+dist[k][j];
                    }
                }
            }
        }

        for(i=0;i<=n;i++){
            for(state=0;state<(1<<n );state++){
                dp[state][i]=inf;
            }
        }
        dp[0][0]=0;
        for(state=1;state<(1<<n);state++){
            for(i=1;i<=n;i++){
                if(state&(1<<(i-1))){
                    if(state==(1<<(i-1))){
                        dp[state][i]=min(dp[state][i],dist[0][i] );
                    }
                    else{
                        state1=state^(1<<(i-1));
                        for(j=1;j<=n;j++){
                            if(state1&(1<<(j-1))){
                                dp[state][i]=min(dp[state][i],dp[state1][j]+dist[j][i] );
                            }

                        }
                    }
                }
            }
        }
        int ans=inf;
        for(i=1;i<=n;i++){
            ans=min(ans,dp[(1<<n )-1][i]+dist[i][0]);
        }
        printf("%d\n",ans);
    }
    return 0;
}

写法二:逆推

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 15
int dist[maxn][maxn],dp[1<<maxn][maxn];

int main()
{
    int n,m,i,j,T,state,k,state1;
    while(scanf("%d",&n)!=EOF && n!=0)
    {
        for(i=0;i<=n;i++){
            for(j=0;j<=n;j++){
                scanf("%d",&dist[i][j]);
            }
        }
        for(k=0;k<=n;k++){
            for(i=0;i<=n;i++){
                for(j=0;j<=n;j++){
                    if(dist[i][j]>dist[i][k]+dist[k][j]){
                        dist[i][j]=dist[i][k]+dist[k][j];
                    }
                }
            }
        }

        for(i=0;i<=n;i++){
            for(state=0;state<(1<<n );state++){
                dp[state][i]=inf;
            }
        }
        dp[0][0]=0;
        for(i=1;i<=n;i++){
            dp[1<<(i-1)][i]=dist[0][i];
        }
        for(state=1;state<(1<<n)-1;state++){
            for(i=1;i<=n;i++){
                if(state&(1<<(i-1))){
                    for(j=1;j<=n;j++){
                        if( (state&(1<<(j-1)))==0 ){
                            dp[state|(1<<(j-1))][j]=min(dp[state|(1<<(j-1))][j],dp[state][i]+dist[i][j] );
                        }

                    }
                }
            }
        }
        int ans=inf;
        for(i=1;i<=n;i++){
            ans=min(ans,dp[(1<<n )-1][i]+dist[i][0]);
        }
        printf("%d\n",ans);
    }
    return 0;
}


展开阅读全文

Hie with the Pie

07-22

DescriptionnnThe Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.nnInputnnInput will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.nnOutputnnFor each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.nnSample Inputnn3n0 1 10 10n1 0 1 2n10 1 0 10n10 2 10 0n0nSample Outputnn8 问答

pie

10-20

DescriptionnMy birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though. nnMy friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. nnWhat is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different. n nInputnOne line with a positive integer: the number of test cases. Then for each test case: n---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends. n---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies. n nOutputnFor each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).n nSample Inputn3n3 3n4 3 3n1 24n5n10 5n1 4 2 3 4 5 6 5 4 2n nSample Outputn25.1327n3.1416n50.2655 问答

Pie

11-12

Problem DescriptionnMy birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.nnMy friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. nnWhat is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.nInputnOne line with a positive integer: the number of test cases. Then for each test case:n---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.n---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.nOutputnFor each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).nSample Inputn3n3 3n4 3 3n1 24n5n10 5n1 4 2 3 4 5 6 5 4 2nSample Outputn25.1327n3.1416n50.2655 问答

没有更多推荐了,返回首页