昇思25天学习打卡营第5天|初学入门-张量 Tensor

**昇思25天学习打卡营第6天|初学入门-张量 Tensor

这节课主要介绍了张量和其两种稀疏矩阵的表示方法。

大部分数据的输入特征都是要装化成张量格式才输入到模型中进行训练的。(因为张量对大规模计算进行了优化)

下面为图像特征的张量转化示例:

import torch
from torchvision import transforms
from PIL import Image

# 读取图像数据
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path)
# 使用 torchvision 的 transforms 模块进行图像预处理
preprocess = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小为 224x224
    transforms.ToTensor(),  # 转换为张量,并归一化至 [0, 1]
])

# 应用预处理操作并转换为张量
input_tensor = preprocess(image)
# input_tensor 现在是一个张量,可以直接用于后续的机器学习或深度学习任务
print(input_tensor.size())  # 打印张量的大小,例如 (3, 224, 224) 表示三个通道的 224x224 图像
# 如果需要将图像特征输入到 PyTorch 的模型中进行预测或训练,可以直接使用 input_tensor

运算之类的东西感觉我们初学者不用太深究,只需要记住张量有很多种计算方法,以及可以拼接就可以了

张量 Tensor类似numpy(数值计算库)创建的多维数组,但是我们不能直接用numpy创建的数值进行输入(因为张量对大规模计算进行了优化,支持计算图和自动求导等功能)

稀疏张量的引入主要是为了减少特征占用的存储以及计算开销,类似数学中学习到的稀疏矩阵。其中,CSRTensor和COOTensor为两种典型的稀疏矩阵表示方法

存储方式上:

CSRTensor 使用三个主要的张量来表示稀疏矩阵:indptrindicesvalues,三个都是一维张量

COOTensor 使用两个主要的张量来表示稀疏矩阵:indicesvalues,前者是二位,后者是一维

适用场景下:

当稀疏矩阵的非零元素分布无规律,或者需要频繁地插入或删除元素时(只要往indices 的后续追加即可),COOTensor 是一个比较合适的选择。

当稀疏矩阵的非零元素分布较规则,或者需要高效地进行矩阵向量乘法等操作时,CSRTensor 是一个比较合适的选择。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值