给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
自顶向下的最小路径和为 11
(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
分析:这道题第一眼看上去就是用动态规划的思想来做,所以也就顺便复习了一下动态规划的方法,用这种方法来做的话这道题可以很简单想到思路,从最下面的一行开始求最小,那么6对应的就是[4,1]中的最小,也就是triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]),6对应的是它正下方和正下方右边两个数的最小值,这也就是动态规划的式子,下面给出AC代码:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n=triangle.size();
for(int i=n-2;i>=0;i--){
for(int j=0;j<triangle[i].size();j++){
triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};