【LeetCode】三角形最小路径和——动态规划

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

自顶向下的最小路径和为 11(即,3 + 1 = 11)。

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

 

分析:这道题第一眼看上去就是用动态规划的思想来做,所以也就顺便复习了一下动态规划的方法,用这种方法来做的话这道题可以很简单想到思路,从最下面的一行开始求最小,那么6对应的就是[4,1]中的最小,也就是triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]),6对应的是它正下方和正下方右边两个数的最小值,这也就是动态规划的式子,下面给出AC代码:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n=triangle.size();
        for(int i=n-2;i>=0;i--){
            for(int j=0;j<triangle[i].size();j++){
                triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]);
            }
        }
        return triangle[0][0];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值