2021-11-18 leetcode动态规划 120. 三角形最小路径和 c++

题目

120. 三角形最小路径和
请添加图片描述

题目解释

如下图所示:
圆中的数字j表示该圆对应的列数
则triangle[i][j] 表示第I行第j列元素值
请添加图片描述

自上而下出发:从(i,j)向下走,两种情况:
(I+1,j) 或者 (i+1,j+1) 的位置
Q:求从上到下的最小路径

思路

动态规划

定义状态转移方程

dp[i][j]: 在第i行第j列时的最小路径

状态转移方程

当前最小路径 = 上一层的最小路径 + 当前路径值
则求上一次路径的最小值,即求上次选择的哪个一个位置
对于现在的位置(i,j),上一个位置在哪与现位置的列坐标j有关,对现位置进行分类讨论
请添加图片描述
i) 现位置在左边界时,即j == 0
只能由第i-1行的在左边界的位置来,上一位置坐标为(i-1,j)
dp[i][j] = dp[i - 1][j] + triangle[I][j]

ii)现位置在右边界时,即j == triangle[I].size()
只能由第i-1行的在右边界的位置来,上一位置坐标为(i-1,j-1)
dp[i][j] = dp[i - 1][j - 1] + triangle[I][j]

iii)现位置在中间的情况
可由(i-1,j)或者(i-1,j-1)到(i,j),选择哪一个位置是取决于哪个的路径值更小
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + triangle[i][j]

最后到达在终点行,得到所有不同走法的总路径,找最小总路径

初始化

三角形的顶点元素
dp[0][0] = triangle[0][0]

AC代码

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n = triangle.size();
        int dp[n][n];
        dp[0][0] = triangle[0][0];
        for(int i = 1; i < n; i++) {
            int m = triangle[i].size();
            for(int j = 0; j < m; j++) {
                if(j == 0)
                    dp[i][j] = dp[i - 1][j] + triangle[i][j];
                else if(j == m - 1)
                    dp[i][j] = dp[i - 1][j - 1] + triangle[i][j];
                else  
                    dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + triangle[i][j];
            }
        }
        int Min = dp[n - 1][0];
        for(int i = 1; i < n; i++) 
            Min = min(Min, dp[n - 1][i]);
        return Min;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聪明的Levi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值