标签传播算法
一、社团划分质量
模块度:社团中实际边密度与有相同节点度数的随即网络边密度的差,越大表示社团划分质量越高。
二、标签传播算法(LPA)
- 从已标记的节点标签信息来预测未标记的节点标签信息,利用样本间的关系,建立完全图模型,适用于无向图。
- (1)初始化所有节点,每个节点有唯一标签;
- (2)随机顺序选取节点,将该节点的标签更新为其邻居节点中出现次数最多的标签(若有多个,则随机选择一个标签);
- (3)迭代至稳定,即每个节点标签与其邻居中出现次数最多的标签相同。
三、优化算法
1.基于传播分数的标签传播算法(LPA-S)
- 增加节点的传播分数属性,利用参数衰减传播分数来限制标签的传播范围。
- (1)初始化所有节点,每个节点有相同传播分数和唯一标签;
- (2)随机顺序选取节点,将该节点的标签更新为其邻居节点中传播分数和最高的标签(若有多个,则随机选择一个标签);
- (3)迭代至稳定,即每个节点标签与其邻居中传播分数和最高的标签相同。